Visions of Synchrophasor Pioneers: A Technical Symposium in Honor of Professors Arun Phadke and James Thorp

Phasor State Estimator: Data Quality Enhancement and Wide-Area System Monitoring

Joe H. Chow
Scott G. Ghiocel

Rensselaer Polytechnic Institute
Synchrophasors for State Estimation

• 1985 and 1986 Power System Transactions papers by Phadke, Thorp, and Karimi – first papers on state estimation using synchrophasor data

• Early approach is to add PMU data to SCADA estimator
 – NYPA SE implementation in the 1990/2000
 – A NASPI project undertaken with TVA, Entergy, and Alstrom
 – Prof. Ali Abur has shown the benefit of having PMU data to improve the convergence of SE solutions

• Three-phase tracking state estimator – Dominion and Virginia Tech

• With more PMUs installed, it becomes possible to develop a state estimator using PMU data only.
Phasor State Estimator Concept

• What is a phasor state estimator (PSE)?
 – A state estimator performed at 30 samples per second, using only synchrophasor measurements of bus voltages and line currents
 – Intended for high-voltage buses: 765/345/230 kV

• Why use PSE?
 – Calculate “pseudo” PMU measurements at unmeasured buses and lines
 – Correlate PMU data across a network, allowing data quality enhancement and filling in missing data
 – Enable interface flow calculation even though not all flows are directly measured with PMUs
 – Monitor generator (fossil and wind turbine) active and reactive power outputs without having a PMU at the generator substation
 – High-sampling-rate allows visibility of disturbances (voltages and power flows), disturbance propagation, voltage stability, frequency response, and oscillations
Phasor State Estimator Concept

• What is needed for a PSE?
 – Good PMU coverage of the high-voltage buses
 • One-third coverage for observability
 • One-half coverage for cross validation (NY and NE)
 – Network data (same as SCADA SE) but no load values required
 – A least-squares algorithm with ability to correct for scaling errors and phase biases (formulation using voltage magnitude and phase)
 – No differential equations required (c.f. dynamic state estimation)
 – For real-time operation: launched from a PDC

• Other potentials with PSE:
 – Cross-regional SE for stability and vulnerability monitoring: a PSE across MISO-PJM-NY-NE
 – Within a control region, a hierarchical SE with PSE as anchored values for the higher voltage buses, and a non-iterative state calculator for the lower voltage buses
PSE for Central NY

- 6 PMUs in 6 substations
- 13-bus observable network (one-third of NY by area)
- Covers critical power transfer interfaces
- Some interface flows are unmeasured (dashed lines)
- PSE calculates missing flows and enables interface monitoring
Phasor State Estimation

• Objective of PSE:
 – Find the best-fitting solution for the network model given a set of phasor measurements

• Why use synchrophasors only?
 – RTUs report data every few seconds
 – Conventional state estimator (SE) takes the latest value

<table>
<thead>
<tr>
<th></th>
<th>Conventional SCADA</th>
<th>Synchrophasors</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reporting Rate</td>
<td>Once every few seconds</td>
<td>30+ samples/sec</td>
</tr>
<tr>
<td>State Estimation</td>
<td>No time-alignment</td>
<td>Time-aligned</td>
</tr>
<tr>
<td>System Dynamics</td>
<td>Not visible</td>
<td>Visible to operators</td>
</tr>
</tbody>
</table>

Goal: Wide-area coverage of the high-voltage transmission system.
PMUs Enable Dynamic Visibility

Comparison of SCADA vs. PMU data for a loss-of-generation event
Maximum-Likelihood Estimator (MLE)

- **Measurements** (z): voltage and current phasors
- **States** (x): voltage phasors
- **Weighted least-squares:**
 \[
 \min \sum W_i e_i^2
 \]
 subj. to
 \[
 e_i = z_i - h_i(x) \quad \forall i \in M
 \]
- **Minimize the error** (e) between the measurements and the network model, $h(x)$:

 Voltage measurements:
 \[
 \tilde{V}_i^{\text{meas}} = \tilde{V}_i + e_{\tilde{V}}
 \]

 Current measurements:
 \[
 \tilde{I}_{ik}^{\text{meas}} = \frac{1}{R_{ik} + jX_{ik}} (\tilde{V}_i - \tilde{V}_k) + \frac{1}{2} jB_{ik} \tilde{V}_i + e_{\tilde{I}}
 \]
- **Can be implemented in rectangular or polar coordinates**
Phase Angle Bias

• Relative phase angle bias can be caused by:
 – Timing error
 – Phasor calculation (frequency estimator algorithm)

• All channels of a PMU share the same timing circuitry and phasor calculation algorithms

• Approach: Estimate the phase angle bias by introducing a new variable in the measurement equations
Phase Angle Bias – Equations

PMU A at Bus 1

\[
\begin{align*}
\theta_1 - \theta_1^{\text{meas}} + \phi_A &= e_{\theta_1} \\
\delta_{13} - \delta_{13}^{\text{meas}} + \phi_A &= e_{\delta_{13}} \\
\vdots \\
\delta_{1n} - \delta_{1n}^{\text{meas}} + \phi_A &= e_{\delta_{1n}}
\end{align*}
\]

PMU B at Bus 2

\[
\begin{align*}
\theta_2 - \theta_2^{\text{meas}} + \phi_B &= e_{\theta_2} \\
\delta_{23} - \delta_{23}^{\text{meas}} + \phi_B &= e_{\delta_{23}} \\
\vdots \\
\delta_{2k} - \delta_{2k}^{\text{meas}} + \phi_B &= e_{\delta_{2k}}
\end{align*}
\]

Same angle bias variable \(\phi_A \) for all PMU channels

Voltage Angle

Current Angles

PMU Node ——> PMU Current

Estimated Node

PMU A

PMU B

Voltage

Angles

\[\tilde{V}_1 \]

\[\tilde{I}_1 \]

\[\tilde{V}_3 \]

\[\tilde{I}_2 \]

\[\tilde{V}_2 \]

\[\tilde{Z}_{13} \]

\[\tilde{Z}_{23} \]
Phase Angle Bias – Example

- Two multi-channel PMUs at one substation
- Measured voltage phase angles have a 0.25° difference
Current Scaling Factors

• Unlike voltage phasor measurements:
 – Current flows have a wide range of values
 – No simple “sanity check” (e.g., 0.95-1.05 p.u.)

• Bad scaling is harder to detect in current phasors than voltage phasors
 – More easily detected by correlating measurements from different substations

• **Approach:** Estimate the scaling error using a new variable in the current measurement equations
Current Scaling Factors – Equations

PMU A at Bus 1

\[
(1 + c_{13}) I_{13} - I_{13}^{\text{meas}} = e_{I_{13}}
\]

\[
(1 + c_{1n}) I_{1n} - I_{1n}^{\text{meas}} = e_{I_{1n}}
\]

Independent scaling for each current channel

PMU B at Bus 2

\[
I_{23} - I_{23}^{\text{meas}} = e_{I_{23}}
\]

\[
(1 + c_{2k}) I_{2k} - I_{2k}^{\text{meas}} = e_{I_{2k}}
\]

Current Magnitudes

Independent estimates of \tilde{V}_3 should agree.
Disturbance Events

• Examine 20 sec window of data including disturbance
 – Disturbances occur around 2 sec
 – PSE solution calculated for each time sample (30/sec)

• Interface monitoring for real events:
 – Power flow
 – Angle separation

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Event 1</td>
<td>Loss-of-generation to the East (500 MW)</td>
</tr>
<tr>
<td>Event 2</td>
<td>Loss-of-generation to the East (800 MW)</td>
</tr>
<tr>
<td>Event 3</td>
<td>Loss-of-generation to the East (700 MW)</td>
</tr>
<tr>
<td>Event 4</td>
<td>Loss-of-generation to the West (800 MW)</td>
</tr>
<tr>
<td>Event 5</td>
<td>Loss-of-generation to the East (No PMU data from Bus 5)</td>
</tr>
<tr>
<td>Event 6</td>
<td>Tap changing (to demonstrate tap ratio estimation)</td>
</tr>
</tbody>
</table>
Estimated Parameters

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\phi_{\text{ref}} = 0$</td>
<td>PMU 1A (at Bus 1) is the reference for angle bias</td>
</tr>
<tr>
<td>ϕ_1</td>
<td>Angle bias for PMU 1B (at Bus 1)</td>
</tr>
<tr>
<td>ϕ_4</td>
<td>Angle bias for PMU 4 (at Bus 4)</td>
</tr>
<tr>
<td>ϕ_5</td>
<td>Angle bias for PMU 5 (at Bus 5)</td>
</tr>
<tr>
<td>ϕ_{10}</td>
<td>Angle bias for PMU 10 (at Bus 10)</td>
</tr>
<tr>
<td>ϕ_{11}</td>
<td>Angle bias for PMU 11 (covers Buses 11 and 12)</td>
</tr>
<tr>
<td>c_{46}</td>
<td>Scaling correction for current measurement I_{46}</td>
</tr>
<tr>
<td>c_{45}</td>
<td>Scaling correction for current measurement I_{45}</td>
</tr>
<tr>
<td>X_{45}</td>
<td>Series reactance for Line 4–5</td>
</tr>
<tr>
<td>B_{45}</td>
<td>Shunt susceptance for Line 4–5</td>
</tr>
<tr>
<td>$a_{1-10,1}$</td>
<td>Transformer tap ratio on Branch 1–10, Circuit 1</td>
</tr>
<tr>
<td>$a_{1-10,2}$</td>
<td>Transformer tap ratio on Branch 1–10, Circuit 2</td>
</tr>
<tr>
<td>a_{11-12}</td>
<td>Transformer tap ratio on Branch 11–12</td>
</tr>
</tbody>
</table>
Central NY System

Legend

- Green circle: Measured Bus Voltage (PMU Location)
- Orange circle: Estimated Bus Voltage
- Blue circle: Observable Bus Voltage
- Green line: Measured Line Current (1 direction)
- Blue line: Measured Line Current (both directions)
- Black dashed line: Unmeasured (calculated) Line Current

Interface to external system

Stability interfaces

To load center
Angle Bias – PMUs 4 & 5
Estimated Current Scaling Factors

![Diagram showing estimated current scaling factors for different events labeled as c_{46} and c_{45} for various events 1 to 5.](image-url)
Transformer Tap Ratio Estimation

![Graph showing transformer tap ratio estimation over time. The graph plots tap ratio against time (in seconds) with two curves labeled $a_{1-10,1}$ and $a_{1-10,2}$. The tap ratio values range from 1.01 to 1.04.](image-url)
Data Quality Enhancement

• Calculate system-wide total vector error (TVE)
 – With real data, actual state values are unknown
 – Include current scaling factors to correct large errors
 – Assume PSE solution is correct

• Reduction of TVE across all PMUs (< 1%):

<table>
<thead>
<tr>
<th>Event</th>
<th>Current scaling correction only</th>
<th>Current scaling and angle bias</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mean TVE</td>
<td>Mean TVE</td>
</tr>
<tr>
<td>Event 1</td>
<td>1.162%</td>
<td>0.890%</td>
</tr>
<tr>
<td>Event 2</td>
<td>1.106%</td>
<td>0.907%</td>
</tr>
<tr>
<td>Event 3</td>
<td>0.993%</td>
<td>0.701%</td>
</tr>
<tr>
<td>Event 4</td>
<td>1.051%</td>
<td>0.852%</td>
</tr>
</tbody>
</table>
Interface Monitoring for Central NY

- Use PSE to estimate unmeasured buses and flows
- Monitor interfaces in real time for disturbance events
Monitoring Transfer Interfaces – Event 2

\[\Delta P \text{ (MW)} \]

\[\Delta \theta_{1-9} \text{ (degrees)} \]

Time (sec)
Monitoring Transfer Interfaces – Event 4

\[\Delta P \text{ (MW)} \]

\[\Delta \theta_{1-9} \text{ (degrees)} \]

Time (sec)
Conclusions

• Data quality improvement by using current synchrophasors to correlate PMUs across the system
• Unmeasured voltage and current phasors (and thus interface flows) can be estimated if observable
• Estimation of angle biases, current scaling factors, and line parameters with sufficient redundancy
• PSE enables system monitoring for dynamic propagation of disturbances across transfer interfaces
• Interest in expanding the PSE to other parts of the NY power system and the New England power system: these two systems have close to 50% PMU coverage of their 345 kV substations.
Acknowledgements

This work was supported primarily by the ERC Program of the National Science Foundation and Department of Energy under NSF Award Number EEC-1041877.

Other US government and industrial sponsors of CURENT research are also gratefully acknowledged.