ECE 5984: Introduction to Machine Learning

Topics:
- (Finish) Regression
- Model selection, Cross-validation
- Error decomposition
- Bias-Variance Tradeoff

Readings: Barber 17.1, 17.2

Dhruv Batra
Virginia Tech
Administrativia

- **HW1**
 - Solutions available

- **Project Proposal**
 - Due: Tue 02/24, 11:55 pm
 - <=2 pages, NIPS format
 - Show Igor’s proposal

- **HW2**
 - Due: Friday 03/06, 11:55pm
 - Implement linear regression, Naïve Bayes, Logistic Regression
Recap of last time
Regression
Linear fitting to data

- We want to fit a linear function to an observed set of points $X = [x_1, \ldots, x_N]$ with associated labels $Y = [y_1, \ldots, y_N]$.
- Once we fit the function, we want to use it to predict the y for new x.
Linear fitting to data

- We want to fit a linear function to an observed set of points $X = [x_1, \ldots, x_N]$ with associated labels $Y = [y_1, \ldots, y_N]$.
- Once we fit the function, we want to use it to predict the y for new x.
- Least squares (LSQ) fitting criterion: find the function that minimizes sum (or average) of square distances between actual ys in the training set and predicted ones.

The fitted line is used as a predictor
Least squares in matrix form

\[X = \begin{bmatrix} 1 & x_{11} & \cdots & x_{1d} \\ \vdots & \ddots & \vdots \\ 1 & x_{N1} & \cdots & x_{Nd} \end{bmatrix}, \quad y = \begin{bmatrix} y_1 \\ \vdots \\ y_N \end{bmatrix}, \quad w = \begin{bmatrix} w_0 \\ \vdots \\ w_d \end{bmatrix}. \]

- Predictions: \(\hat{y} = Xw \), errors: \(y - Xw \), empirical loss:

\[L(w, X) = \frac{1}{N} (y - Xw)^T (y - Xw) \]
Least squares solution

\[
\frac{\partial}{\partial \mathbf{w}} L(\mathbf{w}) = -\frac{2}{N} (\mathbf{X}^T \mathbf{y} - \mathbf{X}^T \mathbf{X} \mathbf{w}) = 0
\]

\[
\mathbf{X}^T \mathbf{y} = \mathbf{X}^T \mathbf{X} \mathbf{w} \Rightarrow \mathbf{w}^* = (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \mathbf{y}
\]

- \(\mathbf{X}^\dagger \triangleq (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \) is called the \textit{Moore-Penrose pseudoinverse} of \(\mathbf{X} \).

- Linear regression in Matlab:

 \[
 \% \text{ } \mathbf{X}(i,:) \text{ } \text{is } i\text{-th example, } \mathbf{y}(i) \text{ } \text{is } i\text{-th label}
 \]

 \[
 \mathbf{w}_{\text{LSQ}} = \text{pinv}([\text{ones(size}(\mathbf{X},1),1) \text{ } \mathbf{X}]) \ast \mathbf{y};
 \]

- Prediction:

 \[
 \hat{\mathbf{y}} = \mathbf{w}^\ast \mathbf{T} \begin{bmatrix} 1 \\ \mathbf{x}_0 \end{bmatrix} = \mathbf{y}^\ast \mathbf{X}^\dagger \mathbf{T} \begin{bmatrix} 1 \\ \mathbf{x}_0 \end{bmatrix}
 \]
But, why?

- Why sum squared error???
- Gaussians, Watson, Gaussians…
Gaussian noise model

\[y = f(x; w) + \nu, \quad \nu \sim \mathcal{N}(\nu; 0, \sigma^2) \]

- Given the input \(x \), the label \(y \) is a random variable

\[p(y|x; w, \sigma) = \mathcal{N}(y; f(x; w), \sigma^2) \]

that is,

\[p(y|x; w, \sigma) = \frac{1}{\sigma \sqrt{2\pi}} \exp \left(-\frac{(y - f(x; w))^2}{2\sigma^2} \right) \]

- This is an explicit model of \(y \) that allows us, for instance, to sample \(y \) for a given \(x \).
Is OLS Robust?

• Demo
 – http://www.calpoly.edu/~srein/StatDemo/All.html

• Bad things happen when the data does not come from your model!

• How do we fix this?
Robust Linear Regression

- $y \sim \text{Lap}(w'x, b)$
- On paper

![Graph showing linear data with noise and outliers with different loss functions: L2, L1, huber, least squares, laplace]
Plan for Today

• (Finish) Regression
 – Bayesian Regression
 – Different prior vs likelihood combination
 – Polynomial Regression

• Error Decomposition
 – Bias-Variance
 – Cross-validation
Robustify via Prior

• Ridge Regression

• \(y \sim N(w'x, \sigma^2) \)
• \(w \sim N(0, t^2I) \)

• \(P(w \mid x,y) = \)
Summary

<table>
<thead>
<tr>
<th>Likelihood</th>
<th>Prior</th>
<th>Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gaussian</td>
<td>Uniform</td>
<td>Least Squares</td>
</tr>
<tr>
<td>Gaussian</td>
<td>Gaussian</td>
<td>Ridge Regression</td>
</tr>
<tr>
<td>Gaussian</td>
<td>Laplace</td>
<td>Lasso</td>
</tr>
<tr>
<td>Laplace</td>
<td>Uniform</td>
<td>Robust Regression</td>
</tr>
<tr>
<td>Student</td>
<td>Uniform</td>
<td>Robust Regression</td>
</tr>
</tbody>
</table>
Polynomial regression

- Consider 1D for simplicity:

\[f(x; \mathbf{w}) = w_0 + w_1 x + w_2 x^2 + \ldots + w_m x^m. \]

- No longer linear in \(x \) – but still linear in \(\mathbf{w} \)!
Polynomial regression

- Consider 1D for simplicity:

\[f(x; w) = w_0 + w_1x + w_2x^2 + \ldots + w_mx^m. \]

- No longer linear in \(x \) – but still linear in \(w \)!
- Define \(\phi(x) = [1, x, x^2, \ldots, x^m]^T \)
- Then, \(f(x; w) = w^T \phi(x) \) and we are back to the familiar simple linear regression. The least squares solution:

\[\hat{w} = (X^TX)^{-1}X^T y, \text{ where } X = \begin{bmatrix} 1 & x_1 & x_1^2 & \ldots & x_1^m \\ 1 & x_2 & x_2^2 & \ldots & x_2^m \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & x_N & x_N^2 & \ldots & x_N^m \end{bmatrix} \]
General additive regression models

- A general extension of the linear regression model:

\[f(x; w) = w_0 + w_1 \phi_1(x) + w_2 \phi_2(x) + \ldots + w_m \phi_m(x), \]

where \(\phi_j(x) : \mathcal{X} \rightarrow \mathbb{R}, j = 1, \ldots, m \) are the basis functions.

- This is still linear in \(w \),

\[f(x; w) = w^T \phi(x) \]

even when \(\phi \) is non-linear in the inputs \(x \).
General additive regression models

\[f(x; w) = w_0 + w_1 \phi_1(x) + w_2 \phi_2(x) + \ldots + w_m \phi_m(x), \]

- Still the same ML estimation technique applies:

\[\hat{w} = (X^T X)^{-1} X^T y \]

where \(X \) is the design matrix

\[
\begin{bmatrix}
\phi_0(x_1) & \phi_1(x_1) & \phi_2(x_1) & \ldots & \phi_m(x_1) \\
\phi_0(x_2) & \phi_1(x_2) & \phi_2(x_2) & \ldots & \phi_m(x_2) \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
\phi_0(x_N) & \phi_1(x_N) & \phi_2(x_N) & \ldots & \phi_m(x_N)
\end{bmatrix}
\]

(for convenience we will denote \(\phi_0(x) \equiv 1 \))
Example

• Demo
 – http://www.princeton.edu/~rkatzwer/PolynomialRegression/
What you need to know

• Linear Regression
 – Model
 – Least Squares Objective
 – Connections to Max Likelihood with Gaussian Conditional
 – Robust regression with Laplacian Likelihood
 – Ridge Regression with priors
 – Polynomial and General Additive Regression
New Topic: Model Selection and Error Decomposition
Example for Regression

• Demo
 – http://www.princeton.edu/~rkatzwer/PolynomialRegression/

• How do we pick the hypothesis class?
Model Selection

• How do we pick the right model class?

• Similar questions
 – How do I pick magic hyper-parameters?
 – How do I do feature selection?
Errors

• Expected Loss/Error
• Training Loss/Error
• Validation Loss/Error
• Test Loss/Error

• Reporting Training Error (instead of Test) is CHEATING

• Optimizing parameters on Test Error is CHEATING
Cross-validation

- The improved holdout method: \(k \)-fold cross-validation
 - Partition data into \(k \) roughly equal parts;
 - Train on all but \(j \)-th part, test on \(j \)-th part
Cross-validation

- The improved holdout method: \(k \)-fold cross-validation
 - Partition data into \(k \) roughly equal parts;
 - Train on all but \(j \)-th part, test on \(j \)-th part

\[x_1 \quad \ldots \quad x_N \]
Cross-validation

- The improved holdout method: \(k \)-fold cross-validation
 - Partition data into \(k \) roughly equal parts;
 - Train on all but \(j \)-th part, test on \(j \)-th part

\[
x_1 \quad \ldots \quad x_N
\]
Cross-validation

- The improved holdout method: \(k \)-fold cross-validation
 - Partition data into \(k \) roughly equal parts;
 - Train on all but \(j \)-th part, test on \(j \)-th part

\[
\begin{align*}
 x_1 & \quad \ldots \quad x_N
\end{align*}
\]
Cross-validation

- The improved holdout method: *k*-fold cross-validation
 - Partition data into *k* roughly equal parts;
 - Train on all but *j*-th part, test on *j*-th part

\[x_1 \quad \ldots \quad x_N \]

- An extreme case: *leave-one-out* cross-validation

\[
\hat{L}_{cv} = \frac{1}{N} \sum_{i=1}^{N} (y_i - f(x_i; \hat{w}_{-i}))^2
\]

where \(\hat{w}_{-i} \) is fit to all the data but the *i*-th example.
Typical Behavior

Accuracy

100%

Asymptotic training accuracy

Best test accuracy

training

test

Optimal stopping point

Training effort
Overfitting

• **Overfitting**: a learning algorithm overfits the training data if it outputs a solution \mathbf{w} when there exists another solution \mathbf{w}' such that:

$$[\text{error}_{\text{train}}(\mathbf{w}) < \text{error}_{\text{train}}(\mathbf{w}')] \land [\text{error}_{\text{true}}(\mathbf{w}') < \text{error}_{\text{true}}(\mathbf{w})]$$
Error Decomposition

- Model Class
- Estimation Error
- Optimization Error
- Modeling Error
- Reality
Error Decomposition

Reality

Modeling Error

Optimization Error

Estimation Error

model class

(C) Dhruv Batra
Error Decomposition

Higher-Order Potentials

model class

Estimation Error

Optimization Error

Modeling Error

Reality

horse

person

(C) Dhruv Batra
Error Decomposition

- **Approximation/Modeling Error**
 - You approximated reality with model

- **Estimation Error**
 - You tried to learn model with finite data

- **Optimization Error**
 - You were lazy and couldn’t/didn’t optimize to completion

- **(Next time) Bayes Error**
 - Reality just sucks