ECE 5984: Introduction to Machine Learning

Topics:
- Statistical Estimation (MLE, MAP, Bayesian)

Readings: Barber 8.6, 8.7

Dhruv Batra
Virginia Tech
Administrativia

• HW0
 – Solutions available

• HW1
 – Due on Sun 02/15, 11:55pm

• Project Proposal
 – Due: Tue 02/24, 11:55 pm
 – <=2pages, NIPS format
Recap from last time
Procedural View

• Training Stage:
 – Raw Data $\rightarrow x$ (Feature Extraction)
 – Training Data $\{ (x,y) \} \rightarrow f$ (Learning)

• Testing Stage
 – Raw Data $\rightarrow x$ (Feature Extraction)
 – Test Data $x \rightarrow f(x)$ (Apply function, Evaluate error)
Statistical Estimation View

• Probabilities to rescue:
 – x and y are random variables
 – $D = (x_1,y_1), (x_2,y_2), \ldots, (x_N,y_N) \sim P(X,Y)$

• IID: Independent Identically Distributed
 – Both training & testing data sampled IID from $P(X,Y)$
 – Learn on training set
 – Have some hope of generalizing to test set
Interpreting Probabilities

• What does P(A) mean?

• Frequentist View
 – limit $N \to \infty \frac{\#(A \text{ is true})}{N}$
 – limiting frequency of a repeating non-deterministic event

• Bayesian View
 – P(A) is your “belief” about A

• Market Design View
 – P(A) tells you how much you would bet
Concepts

- Marginal distributions / Marginalization
- Conditional distribution / Chain Rule
- Bayes Rule
Concepts

• Likelihood
 – How much does a certain hypothesis explain the data?

• Prior
 – What do you believe before seeing any data?

• Posterior
 – What do we believe after seeing the data?
KL-Divergence / Relative Entropy

- An asymmetric measure of the distance between two distributions:

\[KL[p\|q] = \sum_x p(x)[\log p(x) - \log q(x)] \]

- \(KL > 0 \) unless \(p = q \) then \(KL = 0 \)

- Tells you the extra cost if events were generated by \(p(x) \) but instead of charging under \(p(x) \) you charged under \(q(x) \).
Plan for Today

• Statistical Learning
 – Frequentist Tool
 • Maximum Likelihood
 – Bayesian Tools
 • Maximum A Posteriori
 • Bayesian Estimation

• Simple examples (like coin toss)
 – But SAME concepts will apply to sophisticated problems.
Your first probabilistic learning algorithm

• After taking this ML class, you drop out of VT and join an illegal betting company.

• Your new boss asks you:
 – If Novak Djokovic & Rafael Nadal play tomorrow, will Nadal win or lose W/L?

• You say: what happened in the past?
 – W, L, L, W, W

• You say: $P(\text{Nadal Wins}) = \ldots$

• Why?
UNKNOWN TARGET FUNCTION
\(f: x \rightarrow y \)

(ideal credit approval function)

TRAINING EXAMPLES
\((x_1, y_1), \ldots, (x_N, y_N)\)

(historical records of credit customers)

LEARNING ALGORITHM
\(A \)

HYPOTHESIS SET
\(\mathcal{H} \)

(set of candidate formulas)

FINAL HYPOTHESIS
\(g \approx f \)

(final credit approval formula)
Maximum Likelihood Estimation

• Goal: Find a good θ

• What’s a good θ?
 – One that makes it likely for us to have seen this data
 – Quality of $\theta = \text{Likelihood}(\theta; D) = P(\text{data} | \theta)$
Sufficient Statistic

\[\hat{\theta}_{MLE} = \frac{\alpha_H}{\alpha_H + \alpha_T} \]

- \(D_1 = \{1,1,1,0,0,0\} \)
- \(D_2 = \{1,0,1,0,1,0\} \)

- A function of the data \(\phi(Y) \) is a sufficient statistic, if the following is true

\[\sum_{i \in D_1} \phi(y_i) = \sum_{i \in D_2} \phi(y_i) \implies L(\theta; D_1) = L(\theta; D_2) \]
Why Max-Likelihood?

• Leads to “natural” estimators

• MLE is OPT if model-class is correct
 – Log-likelihood is same as cross-entropy
 – Relate cross-entropy to KL
How many flips do I need?

\[
\hat{\theta}_{MLE} = \frac{\alpha_H}{\alpha_H + \alpha_T}
\]

• Boss says: Last year:
 – 3 heads/wins-for-Nadal
 – 2 tails/losses-for-Nadal.

• You say: \(\theta = \frac{3}{5} \), I can prove it!

• He says: What if
 – 30 heads/wins-for-Nadal
 – 20 tails/losses-for-Nadal.

• You say: Same answer, I can prove it!

• He says: What’s better?
 • You say: Humm… The more the merrier???
 • He says: Is this why I am paying you the big bucks???
Bayesian Estimation

• Boss says: What is I know Nadal is a better player on clay courts?
• You say: Bayesian it is then..
Priors

• What are priors?
 – Express beliefs before experiments are conducted
 – Computational ease: lead to “good” posteriors
 – Help deal with unseen data
 – Regularizers: More about this in later lectures

• Conjugate Priors
 – Prior is conjugate to likelihood if it leads to itself as posterior
 – Closed form representation of posterior
Beta prior distribution – $P(\theta)$

$$P(\theta) = \frac{\theta^{\beta_H - 1}(1 - \theta)^{\beta_T - 1}}{B(\beta_H, \beta_T)} \sim \text{Beta}(\beta_H, \beta_T)$$

- **Demo:**
• Benefits of conjugate priors

\[P(D \mid \theta) = \theta^{\alpha_H} (1 - \theta)^{\alpha_T} \]

\[P(\theta \mid D) \propto P(D \mid \theta) P(\theta) \]
MAP for Beta distribution

\[P(\theta \mid \mathcal{D}) = \frac{\theta^{\beta_H + \alpha_H - 1}(1 - \theta)^{\beta_T + \alpha_T - 1}}{B(\beta_H + \alpha_H, \beta_T + \alpha_T)} \sim \text{Beta}(\beta_H + \alpha_H, \beta_T + \alpha_T) \]

- MAP: use most likely parameter:

\[\hat{\theta} = \arg \max_{\theta} P(\theta \mid \mathcal{D}) = \]

- Beta prior equivalent to extra W/L matches
- As \(N \to \infty \), prior is “forgotten”
- But, for small sample size, prior is important!
Effect of Prior

- Prior = Beta(2,2)
 - $\theta_{\text{prior}} = 0.5$

- Dataset = \{H\}
 - $L(\theta) = \theta$
 - $\theta_{\text{MLE}} = 1$

- Posterior = Beta(3,2)
 - $\theta_{\text{MAP}} = (3-1)/(3+2-2) = 2/3$
What you need to know

- Statistical Learning:
 - Maximum likelihood
 - Why MLE?
 - Sufficient statistics
 - Maximum a posteriori
 - Bayesian estimation (return an entire distribution)
 - Priors, posteriors, conjugate priors
 - Beta distribution (conjugate of bernoulli)