ECE 5984: Introduction to Machine Learning

Topics:
- Supervised Learning
 - General Setup, learning from data
 - Nearest Neighbour

Readings: Barber 14 (kNN)

Dhruv Batra
Virginia Tech
Administrativia

• New class room
 – GBJ 102

• More space
 – Force-adds approved

• Scholar
 – Anybody not have access?
 – Still have problems reading/submitting? Resolve ASAP.
 – Please post questions on Scholar Forum.
 – Please check scholar forums. You might not know you have a doubt.
Administrativia

• Reading/Material/Pointers
 – Slides on Scholar
 – Scanned handwritten notes on Scholar
 – Readings/Video pointers on Public Website
Administrativia

- Computer Vision & Machine Learning Reading Group
 - Meet: Fridays 5-6pm
 - Reading CV/ML conference papers
 - Whittemore 654
Plan for today

• Supervised/Inductive Learning
 – Setup
 – Goal: Classification, Regression
 – Procedural View
 – Statistical Estimation View
 – Loss functions

• Your first classifier: k-Nearest Neighbour
Types of Learning

• **Supervised learning**
 – Training data includes desired outputs

• **Unsupervised learning**
 – Training data does not include desired outputs

• **Weakly or Semi-supervised learning**
 – Training data includes a few desired outputs

• **Reinforcement learning**
 – Rewards from sequence of actions
Supervised / Inductive Learning

• Given
 – examples of a function \((x, f(x))\)

• Predict function \(f(x)\) for new examples \(x\)
 – Discrete \(f(x)\): Classification
 – Continuous \(f(x)\): Regression
 – \(f(x) = \text{Probability}(x)\): Probability estimation
Appropriate Applications for Supervised Learning

- **Situations where there is no human expert**
 \[x: \text{Bond graph for a new molecule.} \]
 \[f(x): \text{Predicted binding strength to AIDS protease molecule.} \]

- **Situations where humans can perform the task but can’t describe how they do it.**
 \[x: \text{Bitmap picture of hand-written character} \]
 \[f(x): \text{Ascii code of the character} \]

- **Situations where the desired function is changing frequently**
 \[x: \text{Description of stock prices and trades for last 10 days.} \]
 \[f(x): \text{Recommended stock transactions} \]

- **Situations where each user needs a customized function} f**
 \[x: \text{Incoming email message.} \]
 \[f(x): \text{Importance score for presenting to user (or deleting without presenting).} \]
Supervised Learning

• Input: x (images, text, emails…)

• Output: y (spam or non-spam…)

• (Unknown) Target Function
 – \(f: X \rightarrow Y \) (the “true” mapping / reality)

• Data
 – \((x_1, y_1), (x_2, y_2), \ldots, (x_N, y_N)\)

• Model / Hypothesis Class
 – \(g: X \rightarrow Y \)
 – \(y = g(x) = \text{sign}(w^Tx) \)

• Learning = Search in hypothesis space
 – Find best \(g \) in model class.
UNKNOWN TARGET FUNCTION
\(f: \mathcal{X} \rightarrow \mathcal{Y} \)

(ideal credit approval function)

TRAINING EXAMPLES
\((x_1, y_1), \ldots, (x_N, y_N) \)

(historical records of credit customers)

LEARNING ALGORITHM
\(\mathcal{A} \)

FINAL HYPOTHESIS
\(g \approx f \)

(final credit approval formula)

HYPOTHESIS SET
\(\mathcal{H} \)

(set of candidate formulas)
Basic Steps of Supervised Learning

• **Set up** a supervised learning problem

• **Data collection**
 – Start with training data for which we know the correct outcome provided by a teacher or oracle.

• **Representation**
 – Choose how to represent the data.

• **Modeling**
 – Choose a hypothesis class: \(H = \{g : X \to Y\} \)

• **Learning/Estimation**
 – Find best hypothesis you can in the chosen class.

• **Model Selection**
 – Try different models. Picks the best one. (More on this later)

• **If happy stop**
 – Else refine one or more of the above
Learning is hard!

- No assumptions = No learning

![Diagram of a learning problem with an unknown function and input examples.](image)

<table>
<thead>
<tr>
<th>Example</th>
<th>x_1</th>
<th>x_2</th>
<th>x_3</th>
<th>x_4</th>
<th>y</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>7</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>
Klingon vs Mlingon Classification

• Training Data
 – Klingon: klix, kour, koop
 – Mlingon: moo, maa, mou

• Testing Data: kap

• Which language?

• Why?
Loss/Error Functions

• How do we measure performance?

• Regression:
 – L_2 error

• Classification:
 – #misclassifications
 – Weighted misclassification via a cost matrix

 – For 2-class classification:
 • True Positive, False Positive, True Negative, False Negative

 – For k-class classification:
 • Confusion Matrix
Training vs Testing

• What do we want?
 – Good performance (low loss) on training data?
 – No, Good performance on *unseen test data*!

• Training Data:
 – \{ (x_1, y_1), (x_2, y_2), \ldots, (x_N, y_N) \}
 – Given to us for learning f

• Testing Data
 – \{ x_1, x_2, \ldots, x_M \}
 – Used to see if we have learnt anything
Procedural View

- **Training Stage:**
 - Raw Data $\rightarrow x$
 (Feature Extraction)
 - Training Data $\{ (x,y) \} \rightarrow f$
 (Learning)

- **Testing Stage**
 - Raw Data $\rightarrow x$
 (Feature Extraction)
 - Test Data $x \rightarrow f(x)$
 (Apply function, Evaluate error)
Statistical Estimation View

• Probabilities to rescue:
 – x and y are *random variables*
 – $D = (x_1,y_1), (x_2,y_2), \ldots, (x_N,y_N) \sim P(X,Y)$

• IID: Independent Identically Distributed
 – Both training & testing data sampled IID from $P(X,Y)$
 – Learn on training set
 – Have some hope of *generalizing* to test set
Concepts

- **Capacity**
 - Measure how large hypothesis class H is.
 - Are all functions allowed?

- **Overfitting**
 - f works well on training data
 - Works poorly on test data

- **Generalization**
 - The ability to achieve low error on new test data
Guarantees

• 20 years of research in Learning Theory oversimplified:

• If you have:
 – Enough training data D
 – and H is not too complex
 – then *probably* we can generalize to unseen test data
New Topic: Nearest Neighbours
Synonyms

• Nearest Neighbours

• k-Nearest Neighbours

• Member of following families:
 – Instance-based Learning
 – Memory-based Learning
 – Exemplar methods
 – Non-parametric methods
Nearest Neighbor is an example of.... Instance-based learning

Has been around since about 1910.

To make a prediction, search database for similar datapoints, and fit with the local points.

Assumption: Nearby points behavior similarly wrt y
Instance/Memory-based Learning

Four things make a memory based learner:

• A distance metric

• How many nearby neighbors to look at?

• A weighting function (optional)

• How to fit with the local points?
1-Nearest Neighbour

Four things make a memory based learner:

- **A distance metric**
 - Euclidean (and others)

- **How many nearby neighbors to look at?**
 - 1

- **A weighting function (optional)**
 - unused

- **How to fit with the local points?**
 - Just predict the same output as the nearest neighbour.
k-Nearest Neighbour

Four things make a memory based learner:

• **A distance metric**
 – Euclidean (and others)

• **How many nearby neighbors to look at?**
 – k

• **A weighting function (optional)**
 – unused

• **How to fit with the local points?**
 – Just predict the average output among the nearest neighbours.
1 vs k Nearest Neighbour
1 vs k Nearest Neighbour
Nearest Neighbour

- Demo 1

- Demo 2
Spring 2013 Projects

• Gender Classification from body proportions
 – Igor Janjic & Daniel Friedman, Juniors
Scene Completion

[Hayes & Efros, SIGGRAPH07]
... 200 total

Hays and Efros, SIGGRAPH 2007
Context Matching
Graph cut + Poisson blending

Hays and Efros, SIGGRAPH 2007