ECE 5984: Introduction to Machine Learning

Topics:
- Classification: Logistic Regression
- NB & LR connections

Readings: Barber 17.4

Dhruv Batra
Virginia Tech
Administrativia

• HW2
 – Due: Friday 03/06, 03/15, 11:55pm
 – Implement linear regression, Naïve Bayes, Logistic Regression

• Need a couple of catch-up lectures
 – How about 4-6pm?
Recap of last time
Naïve Bayes
(your first probabilistic classifier)
Classification

• **Learn**: $h: X \mapsto Y$
 - X – features
 - Y – target classes

• Suppose you know $P(Y|X)$ exactly, how should you classify?
 - Bayes classifier:

• **Why?**
Error Decomposition

• Approximation/Modeling Error
 – You approximated reality with model

• Estimation Error
 – You tried to learn model with finite data

• Optimization Error
 – You were lazy and couldn’t/didn’t optimize to completion

• Bayes Error
 – Reality just sucks
 – http://psych.hanover.edu/JavaTest/SDT/ROC.html
Generative vs. Discriminative

- **Generative Approach** *(Naïve Bayes)*
 - Estimate $p(x|y)$ and $p(y)$
 - Use Bayes Rule to predict y

- **Discriminative Approach** *(Logistic Regression)*
 - Estimate $p(y|x)$ directly
 - Learn “discriminant” function $h(x)$ *(Support Vector Machine)*

Using Bayes rule, optimal classifier

$$h^*(x) = \arg\max_c \{\log p(x|y = c) + \log p(y = c)\}$$
The Naïve Bayes assumption

- Naïve Bayes assumption:
 - Features are independent given class:
 \[P(X_1, X_2|Y) = P(X_1|X_2, Y)P(X_2|Y) = P(X_1|Y)P(X_2|Y) \]
 - More generally:
 \[P(X_1, ..., X_d|Y) = \prod_{i} P(X_i|Y) \]

- How many parameters now?
 - Suppose \(X \) is composed of \(d \) binary features
Generative vs. Discriminative

- **Using Bayes rule, optimal classifier**

\[h^*(x) = \arg\max_c \{\log p(x|y = c) + \log p(y = c)\} \]

- **Generative Approach (Naïve Bayes)**
 - Estimate \(p(x|y) \) and \(p(y) \)
 - Use Bayes Rule to predict \(y \)

- **Discriminative Approach**
 - Estimate \(p(y|x) \) directly (Logistic Regression)
 - Learn “discriminant” function \(h(x) \) (Support Vector Machine)
Today: Logistic Regression

• Main idea
 – Think about a 2 class problem {0,1}
 – Can we regress to P(Y=1 | X=x)?

• Meet the Logistic or Sigmoid function
 – Crunches real numbers down to 0-1

• Model
 – In regression: $y \sim N(w'x, \lambda^2)$
 – Logistic Regression: $y \sim \text{Bernoulli}(\sigma(w'x))$
Understanding the sigmoid

\[
\sigma(w_0 + \sum_i w_i x_i) = \frac{1}{1 + e^{-w_0 - \sum_i w_i x_i}}
\]

- \(w_0=2, w_1=1\)
- \(w_0=0, w_1=1\)
- \(w_0=0, w_1=0.5\)
Logistic Regression – a Linear classifier

• Demo
 – http://www.cs.technion.ac.il/~rani/LocBoost/
Expressing Conditional Log Likelihood

\[l(w) \equiv \sum_j \ln P(y^j|x^j, w) \]

\[P(Y = 0|X, w) = \frac{1}{1 + \exp(w_0 + \sum_i w_i x_i)} \]

\[P(Y = 1|X, w) = \frac{\exp(w_0 + \sum_i w_i x_i)}{1 + \exp(w_0 + \sum_i w_i x_i)} \]

\[l(w) = \sum_j y^j \ln P(y^j = 1|x^j, w) + (1 - y^j) \ln P(y^j = 0|x^j, w) \]
Maximizing Conditional Log Likelihood

\[
l(w) \equiv \ln \prod_j P(y^j|x^j, w)
= \sum_j y^j (w_0 + \sum_i d w_i x^j_i) - \ln (1 + \exp(w_0 + \sum_i d w_i x^j_i))
\]

Bad news: no closed-form solution to maximize \(l(w)\)

Good news: \(l(w)\) is concave function of \(w\)!
Gradient Descent

- Choose a starting point \(w_0 \) when \(t = 0 \) and the desired tolerance \(\epsilon \).
- Repeat until \(\| \nabla f(w_t) \| \leq \epsilon \) is satisfied

\[
 w_{t+1} = w_t - \eta_t \nabla f(w_t)
\]
Careful about step-size

Quadratic bowl

$\eta = .1$

$\eta = .3$
Local vs. global optimal

For general objective functions $f(x)$

We get local optimum

Consider rolling a ball on a hill

depends on where you start

does not depend on where you start
When does it work?
Local vs. global optimal

In practice, convexity can be a very nice thing

In general, convex problems -- minimizing a convex function over a convex set -- can be solved numerically very efficiently

This is advantageous especially if stationary points cannot be found analytically in closed-form

Convex: unique global optimum

nonconvex: local optimum
Convex Functions

- \(f : \mathbb{R}^d \rightarrow \mathbb{R} \) is a convex function if domain of \(f \) is a convex set and for all \(\lambda \in [0, 1] \)

\[
f(\lambda w_1 + (1 - \lambda)w_2) \leq \lambda f(w_1) + (1 - \lambda) f(w_2)
\]
Multivariate functions

Definition

\[f(x) \text{ is convex if} \]

\[f(\lambda a + (1 - \lambda)b) \leq \lambda f(a) + (1 - \lambda) f(b) \]

How to determine convexity in this case?

Second-order derivative becomes Hessian matrix

\[
H = \begin{bmatrix}
\frac{\partial^2 f(x)}{\partial x_1^2} & \frac{\partial^2 f(x)}{\partial x_1 \partial x_2} & \cdots & \frac{\partial^2 f(x)}{\partial x_1 \partial x_D} \\
\frac{\partial^2 f(x)}{\partial x_1 \partial x_2} & \frac{\partial^2 f(x)}{\partial x_2^2} & \cdots & \frac{\partial^2 f(x)}{\partial x_2 \partial x_D} \\
\vdots & \vdots & \ddots & \vdots \\
\frac{\partial^2 f(x)}{\partial x_1 \partial x_D} & \frac{\partial^2 f(x)}{\partial x_2 \partial x_D} & \cdots & \frac{\partial^2 f(x)}{\partial x_D^2}
\end{bmatrix}
\]
Convexity for multivariate function

If the Hessian is positive semidefinite, then the function is convex

Ex: \[f(x) = \frac{x_1^2}{x_2} \]

\[
H = \begin{bmatrix}
\frac{2}{x_2} & -\frac{2x_1}{x_2^2} \\
-\frac{2x_1}{x_2^2} & \frac{2x_1^2}{x_2^3}
\end{bmatrix} = \frac{2}{x_2^3} \begin{bmatrix}
x_2^2 & -x_1 x_2 \\
-x_1 x_2 & x_1^2
\end{bmatrix}
\]
Verify that the Hessian is positive definite

Assume x_2 is positive, then

For any vector

$$\mathbf{v} = \begin{bmatrix} a \\ b \end{bmatrix}$$

$$\mathbf{v}^T \mathbf{H} \mathbf{v} = \mathbf{v}^T \frac{2}{x_2^3} \begin{bmatrix} x_2^2 & -x_1 x_2 \\ -x_1 x_2 & x_1^2 \end{bmatrix} \mathbf{v}$$

$$= \frac{2}{x_2^3} (a \mathbf{x}_2^2 - 2abx_1 \mathbf{x}_2 + b^2 \mathbf{x}_1^2)$$

$$= \frac{2}{x_2^3} (ax_2 - bx_1)^2 \geq 0$$
What does this function look like?

\[\frac{x_1^2}{x_2} \]
Optimizing concave function – Gradient ascent

- Conditional likelihood for Logistic Regression is concave → Find optimum with gradient ascent

Gradient:
\[\nabla_w l(w) = \left[\frac{\partial l(w)}{\partial w_0}, \ldots, \frac{\partial l(w)}{\partial w_n} \right]' \]

Update rule:
\[\Delta w = \eta \nabla_w l(w) \]
\[w_i^{(t+1)} \leftarrow w_i^{(t)} + \eta \frac{\partial l(w)}{\partial w_i} \]
Maximize Conditional Log Likelihood: Gradient ascent

\[l(w) = \sum_{j} y^j (w_0 + \sum_{i} w_i x_i^j) - \ln(1 + \exp(w_0 + \sum_{i} w_i x_i^j)) \]
Gradient Ascent for LR

Gradient ascent algorithm: iterate until change < ϵ

\[w_0^{(t+1)} \leftarrow w_0^{(t)} + \eta \sum_j [y^j - \hat{P}(Y^j = 1 \mid x^j, w)] \]

For i=1,…,n,

\[w_i^{(t+1)} \leftarrow w_i^{(t)} + \eta \sum_j x_i^j [y^j - \hat{P}(Y^j = 1 \mid x^j, w)] \]

repeat
Perceptron Learning
That’s all M(C)LE. How about M(C)AP?

\[p(w \mid Y, X) \propto P(Y \mid X, w)p(w) \]

- One common approach is to define priors on \(w \)
 - Normal distribution, zero mean, identity covariance
 - “Pushes” parameters towards zero

- Corresponds to **Regularization**
 - Helps avoid very large weights and overfitting
 - More on this later in the semester

- MAP estimate

\[
 w^* = \arg \max_w \ln \left[p(w) \prod_{j=1}^{N} P(y^j \mid x^j, w) \right]
\]
Large parameters \rightarrow Overfitting

- If data is linearly separable, weights go to infinity
- Leads to overfitting

- Penalizing high weights can prevent overfitting
Gradient of M(C)AP

\[
\frac{\partial}{\partial w_i} \ln \left[p(w) \prod_{j=1}^{N} P(y^j \mid x^j, w) \right]
\]

\[
p(w) = \prod_i \frac{1}{\kappa \sqrt{2\pi}} \frac{-w_i^2}{e^{2\kappa^2}}
\]
MLE vs MAP

- Maximum conditional likelihood estimate

\[
\mathbf{w}^* = \arg \max_{\mathbf{w}} \ln \left[\prod_{j=1}^{N} P(y^j \mid x^j, \mathbf{w}) \right]
\]

\[
\mathbf{w}_i^{(t+1)} \leftarrow \mathbf{w}_i^{(t)} + \eta \sum_j x_i^j [y^j - \hat{P}(Y^j = 1 \mid x^j, \mathbf{w})]
\]

- Maximum conditional a posteriori estimate

\[
\mathbf{w}^* = \arg \max_{\mathbf{w}} \ln \left[p(\mathbf{w}) \prod_{j=1}^{N} P(y^j \mid x^j, \mathbf{w}) \right]
\]

\[
\mathbf{w}_i^{(t+1)} \leftarrow \mathbf{w}_i^{(t)} + \eta \left\{ -\lambda \mathbf{w}_i^{(t)} + \sum_j x_i^j [y^j - \hat{P}(Y^j = 1 \mid x^j, \mathbf{w})] \right\}
\]
HW2 Tips

• Naïve Bayes
 – Train_NB
 • Implement “factor_tables” -- $|X_i| \times |Y|$ matrices
 • Prior $|Y| \times 1$ vector
 • Fill entries by counting + smoothing
 – Test_NB
 • $\arg\max_y P(Y=y) P(X_i=x_i)\ldots$
 – TIP: work in log domain

• Logistic Regression
 – Use small step-size at first
 – Make sure you maximize log-likelihood not minimize it
 – Sanity check: plot objective
Finishing up:
Connections between NB & LR
Logistic regression vs Naïve Bayes

• Consider learning \(f: \mathbf{X} \rightarrow \mathbf{Y} \), where
 – \(\mathbf{X} \) is a vector of real-valued features, \(<X_1 \ldots X_d>\)
 – \(\mathbf{Y} \) is boolean

• Gaussian Naïve Bayes classifier
 – assume all \(X_i \) are conditionally independent given \(Y \)
 – model \(P(X_i \mid Y = k) \) as Gaussian \(N(\mu_{ik},\sigma_i) \)
 – model \(P(Y) \) as Bernoulli(\(\theta,1-\theta \))

• What does that imply about the form of \(P(Y \mid X) \)?

\[
P(Y = 1 \mid \mathbf{X} = \mathbf{x}) = \frac{1}{1 + \exp(-w_0 - \sum_i w_i x_i)}
\]
Derive form for $P(Y|X)$ for continuous X_i

$$P(Y = 1|X) = \frac{P(Y = 1)P(X|Y = 1)}{P(Y = 1)P(X|Y = 1) + P(Y = 0)P(X|Y = 0)}$$

$$= \frac{1}{1 + \frac{P(Y = 0)P(X|Y = 0)}{P(Y = 1)P(X|Y = 1)}}$$

$$= \frac{1}{1 + \exp(\ln\frac{P(Y = 0)P(X|Y = 0)}{P(Y = 1)P(X|Y = 1)})}$$

$$= \frac{1}{1 + \exp(\ln \left(\frac{1-\theta}{\theta}\right) + \sum_i \ln \frac{P(X_i|Y = 0)}{P(X_i|Y = 1)})}$$
\[\ln \frac{P(X_i | Y = 0)}{P(X_i | Y = 1)} \]

\[P(X_i = x | Y = y_k) = \frac{1}{\sigma_i \sqrt{2\pi}} e^{-\frac{(x - \mu_{ik})^2}{2\sigma_i^2}} \]
Derive form for $P(Y|X)$ for continuous X_i

$$P(Y = 1|X) = \frac{P(Y = 1)P(X|Y = 1)}{P(Y = 1)P(X|Y = 1) + P(Y = 0)P(X|Y = 0)}$$

$$= \frac{1}{1 + \exp\left(\ln \frac{1-\theta}{\theta} + \sum_i \ln \frac{P(X_i|Y=0)}{P(X_i|Y=1)}\right)}$$

$$\sum_i \left(\frac{\mu_{i0} - \mu_{i1}}{\sigma_i^2} X_i + \frac{\mu_{i1}^2 - \mu_{i0}^2}{2\sigma_i^2}\right)$$

$$P(Y = 1 | X = x) = \frac{1}{1 + \exp(-w_0 - \sum_i w_i x_i)}$$
Gaussian Naïve Bayes vs Logistic Regression

- Representation equivalence
 - But only in a special case!!! (GNB with class-independent variances)
- But what’s the difference???
- LR makes no assumptions about $P(X|Y)$ in learning!!!
- Loss function!!!
 - Optimize different functions \rightarrow Obtain different solutions

Set of Gaussian Naïve Bayes parameters (feature variance independent of class label)

Set of Logistic Regression parameters

Not necessarily
Naïve Bayes vs Logistic Regression

Consider Y boolean, X_i continuous, $X=\langle X_1 \ldots X_d \rangle$

- **Number of parameters:**
 - NB: $4d +1$ (or $3d+1$)
 - LR: $d+1$

- **Estimation method:**
 - NB parameter estimates are uncoupled
 - LR parameter estimates are coupled
G. Naïve Bayes vs. Logistic Regression 1

- Generative and Discriminative classifiers

- Asymptotic comparison
 (# training examples \rightarrow infinity)

 - when model correct
 - GNB (with class independent variances) and LR produce identical classifiers

 - when model incorrect
 - LR is less biased – does not assume conditional independence
 - therefore LR expected to outperform GNB
G. Naïve Bayes vs. Logistic Regression 2

- Generative and Discriminative classifiers

- Non-asymptotic analysis
 - convergence rate of parameter estimates,
 \(d = \# \text{ of attributes in } X \)
 - Size of training data to get close to infinite data solution
 - GNB needs \(O(\log d) \) samples
 - LR needs \(O(d) \) samples

- GNB converges more quickly to its (perhaps less helpful) asymptotic estimates
Some experiments from UCI data sets

Figure 1: Results of 15 experiments on datasets from the UCI Machine Learning repository. Plots are of generalization error vs. m (averaged over 1000 random train/test splits). Dashed line is logistic regression; solid line is naive Bayes.
What you should know about LR

• Gaussian Naïve Bayes with class-independent variances representationally equivalent to LR
 – Solution differs because of objective (loss) function

• In general, NB and LR make different assumptions
 – NB: Features independent given class assumption on $P(X|Y)$
 – LR: Functional form of $P(Y|X)$, no assumption on $P(X|Y)$

• LR is a linear classifier
 – decision rule is a hyperplane

• LR optimized by conditional likelihood
 – no closed-form solution
 – Concave \rightarrow global optimum with gradient ascent
 – Maximum conditional a posteriori corresponds to regularization

• Convergence rates
 – GNB (usually) needs less data
 – LR (usually) gets to better solutions in the limit