ECE 6504: Advanced Topics in Machine Learning
Probabilistic Graphical Models and Large-Scale Learning

Topics
- Markov Random Fields: Inference
 - Approximate: Variational Inference

Readings: KF 11.1,11.2,11.5, Barber 28.1,28.3,28.4

Dhruv Batra
Virginia Tech
Administrativia

• HW3
 – Out 2 days ago
 – Due: Apr 4, 11:55pm
 – Implementation: Loopy Belief Propagation in MRFs

• Project Presentations
 – When: April 22, 24
 – Where: in class
 – 5 min talk
 • Main results
 • Semester completion 2 weeks out from that point so nearly finished results expected
 • Slides due: April 21 11:55pm
Recap of Last Time
Message Passing

• Variables/Factors “talk” to each other via messages:

“I (variable X_3) think that you (variable X_2):

belong to state 1 with confidence 0.4
belong to state 2 with confidence 10
belong to state 3 with confidence 1.5”
• **Initialization:**
 - Assign each factor ϕ to a cluster $\alpha(\phi)$, $\text{Scope}[\phi] \subseteq C_{\alpha(\phi)}$
 - Initialize cluster: $\psi_i^0(C_i) \propto \prod_{\phi: \alpha(\phi) = i} \phi$
 - Initialize messages: $\delta_{j \rightarrow i} = 1$

• While not converged, send messages:
 $\delta_{i \rightarrow j}(S_{ij}) \propto \sum_{C_i - S_{ij}} \psi_i^0(C_i) \prod_{k \in \mathcal{N}(i) - j} \delta_{k \rightarrow i}(S_{ik})$

• **Belief:**
 - On board
Example

• Chain MRF

Compute:

\[P(X_1 \mid X_5 = x_5) \]

• VE steps on board
Factors Generated

Elimination order:
\[O = \{C,D,I,H,G,S,L,J\} \]
Cluster graph for VE

• **VE generates cluster tree!**
 (Also called Clique Tree or Junction Tree)
 - One cluster for each factor used/generated
 - Edge $i \to j$, if f_i used to generate f_j
 - “Message” from i to j generated when marginalizing a variable from f_i
 - Tree because factors only used once

• **Proposition:**
 - “Message” δ_{ij} from i to j
 - $\text{Scope}[\delta_{ij}] \subseteq S_{ij}$
Approximate Inference

• So far: Exact Inference
 – VE & Junction Trees
 – Exponential in tree-width

• There are many many approximate inference algorithms for PGMs
 – You have already seen BP

• Next
 – Variational Inference
 – Connections to BP / Message-Passing
What is Variational Inference?

• A class of methods for approximate inference
 – And parameter learning
 – And approximating integrals basically..

• Key idea
 – Reality is complex
 – Instead of performing approximate computation in something complex
 – Can we perform exact computation in something “simple”?
 – Just need to make sure the simple thing is “close” to the complex thing.

• Key Problems
 – What is close?
 – How do we measure closeness when we can’t perform operations on the complex thing?

(C) Dhruv Batra
KL divergence: Distance between distributions

- Given two distributions p and q KL divergence:

 - $D(p||q) = 0$ iff $p=q$

- Not symmetric – p determines where difference is important
Find simple approximate distribution

- Suppose p is intractable posterior
- Want to find simple q that approximates p
- KL divergence not symmetric

- $D(p\|q)$
 - true distribution p defines support of diff.
 - the “correct” direction
 - will be intractable to compute

- $D(q\|p)$
 - approximate distribution defines support
 - tends to give overconfident results
 - will be tractable
Example 1

- p = 2D Gaussian with arbitrary co-variance
- q = 2D Gaussian with diagonal co-variance

(argmin_q $KL (p \| q)$)

p = Green; q = Red

(argmin_q $KL (q \| p)$)
Example 2

- $p =$ Mixture of Two Gaussians
- $q =$ Single Gaussian
Back to graphical models

• Inference in a graphical model:
 – $P(x) =$
 – want to compute $P(X_i)$
 – our p:

• What is the simplest q?
 – every variable is independent:
 – mean field approximation
 – can compute any prob. very efficiently
Variational Approximate Inference

\[p(x) = \frac{1}{Z} \prod_{(s,t) \in \mathcal{E}} \psi_{st}(x_s, x_t) \prod_{s \in \mathcal{V}} \psi_s(x_s) \]

- Choose a family of approximating distributions which is tractable. The simplest [Mean Field] Approximation:

\[q(x) = \prod_{s \in \mathcal{V}} q_s(x_s) \]

- Measure the quality of approximations. Two possibilities:

\[D(p || q) = \sum_x p(x) \log \frac{p(x)}{q(x)} \quad D(q || p) = \sum_x q(x) \log \frac{q(x)}{p(x)} \]

- Find the approximation minimizing this distance
D(p∥q) for mean field – KL the right way

- D(p∥q) =

 - Trivially minimized by setting \(q_i(x_i) = p_i(x_i) \)

 - Doesn’t provide a computational method…
Plan for today

- MRF Inference
 - Message-Passing as Variational Inference
 - Mean Field
 - Structured Mean Field
 - (Specialized) MAP Inference
 - Integer Programming Formulation
 - Linear Programming Relaxation
 - Dual Decomposition
D(q||p) for mean field – KL the reverse direction

\[
D(q||p) = \sum_x q(x) \log q(x) - \sum_x q(x) \log p(x)
\]
Reverse KL & The Partition Function

- $D(q || p)$:
 - p is Markov net P_F

- **Theorem:**
 $$\log Z = F[p, q] + D(q || p)$$

- Where “Gibbs Free Energy”:
 $$F[p, q] = H_q(\mathcal{X}) + \mathbb{E}_q \left[\sum_c \log \psi_c(X_c) \right]$$
 $$= H_q(\mathcal{X}) + \mathbb{E}_q \left[\text{Score}(\mathcal{X}) \right]$$
 $$= H_q(\mathcal{X}) + \sum_c \sum_{x_c} q(x_c) \theta(x_c)$$
Understanding Reverse KL, Free Energy & The Partition Function

\[\log Z = F[p, q] + D(q||p) \]

\[F[p, q] = H_q(\mathcal{X}) + \mathbb{E}_q \left[\sum_c \log \psi_c(X_c) \right] \]

- Maximizing Energy Functional ⇔ Minimizing Reverse KL

- **Theorem**: Energy Function is lower bound on partition function
 - Maximizing energy functional corresponds to search for tight lower bound on partition function
Mean Field Equations

\[F[p, q] = H_q(\mathcal{X}) + \mathbb{E}_q \left[\sum_c \log \psi_c(X_c) \right] \]

\[H(q) = \sum_{s \in \mathcal{V}} H_s(q_s) = -\sum_{s \in \mathcal{V}} \sum_{x_s} q_s(x_s) \log q_s(x_s) \]

\[\sum_c \sum_{x_c} q_c(x_c) \theta(x_c) = \sum_i \sum_{x_i} q_i(x_i) \theta_i(x_i) + \sum_{(i,j) \in E} \sum_{x_i} \sum_{x_j} q_i(x_i) q_j(x_j) \theta_{ij}(x_i, x_j) \]

- Add Lagrange multipliers to enforce \(\sum_{x_s} q_s(x_s) = 1 \)

- Taking derivatives and simplifying, we find a set of fixed point equations:
 \[q_i(x_i) \propto \psi_i(x_i) \prod_{j \in N(i)} \exp \left\{ \sum_{x_j} \theta_{ij}(x_i, x_j) q_j(x_j) \right\} \]

- Updating one marginal at a time gives convergent coordinate descent
Mean Field versus Belief Propagation

\[p(x) = \frac{1}{Z} \prod_{(s,t) \in \mathcal{E}} \psi_{st}(x_s, x_t) \prod_{s \in \mathcal{V}} \psi_s(x_s) \]

\[q_t(x_t) \propto \psi_t(x_t) \prod_{u \in \Gamma(t)} m_{ut}(x_t) \]

BP:

MF:

Big implications from small changes:

- **Belief Propagation:** Produces exact marginals for any tree, but for general graphs no guarantees of convergence or accuracy
- **Mean Field:** Guaranteed to converge for general graphs, always lower-bounds partition function, but approximate even on trees
There are many stationary points!

Figure 11.18 An example of a multi-modal mean field energy functional landscape. In this network, $P(a, b) = 0.25 - \epsilon$ if $a \neq b$ and ϵ if $a = b$. The axes correspond to the mean field marginal for A and B and the contours show equi-values of the energy functional.
CRF models in multi-class image segmentation

\[E(x) = \sum_i \psi_u(x_i) + \sum_i \sum_{j \in N_i} \psi_p(x_i, x_j) \]

- MAP inference in conditional random field
- Unary term
 - From classifier
 - TextonBoost [Shotton et al. 09]
- Pairwise term
 - Consistent labeling
Adjacency CRF models

\[E(x) = \sum_i \psi_u(x_i) + \sum_i \sum_{j \in N_i} \psi_p(x_i, x_j) \]

- Efficient inference
 - 1 second for 50,000 variables
- Limited expressive power
- Only local interactions
- Excessive smoothing of object boundaries
 - Shrinking bias
Adjacency CRF models

\[E(x) = \sum_i \psi_u(x_i) + \sum_i \sum_{j \in N_i} \psi_p(x_i, x_j) \]

- Efficient inference
 - 1 second for 50,000 variables
- Limited expressive power
- Only local interactions
- Excessive smoothing of object boundaries
 - Shrinking bias
Adjacency CRF models

\[E(x) = \sum_i \psi_u(x_i) + \sum_i \sum_{j \in N_i} \psi_p(x_i, x_j) \]

- Efficient inference
 - 1 second for 50’000 variables
- Limited expressive power
- Only local interactions
- Excessive smoothing of object boundaries
 - Shrinking bias
Fully connected CRF

\[E(x) = \sum_i \psi_u(x_i) + \sum_i \sum_{j>i} \psi_p(x_i, x_j) \]

- Every node is connected to every other node
 - Connections weighted differently
Fully connected CRF

\[E(x) = \sum_{i} \psi_u(x_i) + \sum_{i} \sum_{j > i} \psi_p(x_i, x_j) \]

- Long-range interactions
- No more shrinking bias
Fully connected CRF

\[E(x) = \sum_i \psi_u(x_i) + \sum_i \sum_{j>i} \psi_p(x_i, x_j) \]

- Long-range interactions
- No more shrinking bias
Fully connected CRF

\[E(x) = \sum_{i} \psi_u(x_i) + \sum_{i} \sum_{j>i} \psi_p(x_i, x_j) \]

- Region-based [Rabinovich et al. 07, Galleguillos et al. 08, Toyoda & Hasegawa 08, Payet & Todorovic 10]
 - Tractable up to hundreds of variables
- Pixel-based
 - Tens of thousands of variables
 - Billions of edges
 - Computationally expensive
Efficient Inference in Fully Connected CRFs with Gaussian Edge Potentials

- Inference in 0.2 seconds
 - 50'000 variables
 - MCMC inference: 36 hrs
- Pairwise potentials: linear combinations of Gaussians
Inference

Find the most likely assignment (MAP)

\[\hat{x} = \arg\max_x P(x) \quad \text{where} \quad P(x) = \exp(-E(x)) \]

Mean field approximation

- Find \(Q(x) = \prod_i Q(x_i) \) close to \(P(x) \) in terms of KL-divergence \(D(Q\|P) \)
- \(\hat{x}_i \approx \arg\max_{x_i} Q(x_i) \)
Results: MSRC

MSRC dataset
- 591 images
- 21 classes

<table>
<thead>
<tr>
<th></th>
<th>Time</th>
<th>Global</th>
<th>Avg</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unary</td>
<td>-</td>
<td>84.0</td>
<td>76.6</td>
</tr>
<tr>
<td>Grid CRF</td>
<td>1s</td>
<td>84.6</td>
<td>77.2</td>
</tr>
<tr>
<td>FC CRF</td>
<td>0.2s</td>
<td>86.0</td>
<td>78.3</td>
</tr>
</tbody>
</table>
Summary

- **Fully connected CRF model**
 - Pairwise terms: linear combination of Gaussians

- **Efficient inference**
 - Linear in number of variables
 - Independent of number of pairwise terms
What you need to know about variational methods

• Structured Variational method:
 – select a form for approximate distribution
 – minimize reverse KL

• Equivalent to maximizing energy functional
 – searching for a tight lower bound on the partition function

• Many possible models for Q:
 – independent (mean field)
 – structured as a Markov net
 – cluster variational

• Several subtleties outlined in the book