1 Problem 1

For a crypto system to have perfect secrecy, the cipher text should not reveal any information about the plain text. That is,

$$Pr[p|c] = Pr[p]$$ \hspace{1cm} (1)

Using bayes theorem the following must be true

$$Pr[p|c] = \frac{Pr[c|p]Pr[p]}{Pr[c]}$$ \hspace{1cm} (2)

We know that $Pr[c|p] = \frac{1}{n}$. This is because a latin square has exactly one of every n in a row in the latin square. That is, given any plaintext, it could be any ciphertext, all with equally likely values of $\frac{1}{n}$.

This is also true for $Pr[c]$. For n^2 possible values of ciphertexts, there are n that corresponding to the one in question.

Therefore,

$$Pr[p|c] = \frac{\frac{1}{n}Pr[p]}{\frac{1}{n}}$$ \hspace{1cm} (3)

$$Pr[p|c] = Pr[p]$$ \hspace{1cm} (4)

2 Problem 2

2.1 Part A

In a set of n values, if all n values have equally likely probability of occurring $Pr[n] = \frac{1}{n}$, then a huffman tree created to encode these n values will be a complete (but not balanced) binary tree.
This means that $2^{k+1} - n$ values have length k, and the remaining $n - (2^{k+1} - n)$ values are one level deeper on the huffman tree and have length $k + 1$.

If we are to solve for $\ell(f)$, we can find the weighted average of the lengths.

$$\ell(f) = \frac{(2^{k+1} - n)(k) + (2n - 2^{k+1})(k + 1)}{n} \quad (5)$$

$$\ell(f) = \frac{(k2^{k+1} - kn) + (2kn - k2^{k+1} + 2n - 2^{k+1})}{n} \quad (6)$$

$$\ell(f) = \frac{kn + 2n - 2^{k+1}}{n} \quad (7)$$

$$\ell(f) = n + 2 - \frac{2^{k+1}}{n} \quad (8)$$

2.2 Part B

If $n = 6$, then k must be 2. This is because $k = 2$ satisfies the inequality: $2^2 \leq 6 < 2^3$.

If we know k, we can easily find $\ell(f)$ and $H(X)$. Let’s start with $\ell(f)$.

$$\ell(f) = 2 + 2 - \frac{8}{6} \quad (9)$$

$$\ell(f) = 2.67 \quad (10)$$

Now $H(X)$.

$$H(X) = \log_2(6) \quad (11)$$

$$H(X) = 2.58 \quad (12)$$

3 Problem 3

Given that $X = \{a, b, c, d, e\}$, we must build a prefix free binary encoding if X using Huffman’s algorithm.

the probabilities of each letter in X occurring is as follows.
\[\Pr[a] = 0.32 \]
\[\Pr[b] = 0.23 \]
\[\Pr[c] = 0.20 \]
\[\Pr[d] = 0.15 \]
\[\Pr[e] = 0.10 \]

(13)

Given these probabilities, we can start to build the tree.

We first start with the two letters with the lowest probability of occurring. The two least occurring letters are \(e \) and \(d \). We assign these two letters an arbitrary value of either 0 or 1. We will set \(e \) to 0 and \(d \) to 1.

We now have one section of our huffman tree. We can combine the probabilities of \(e \) and \(d \) to form a new node, which we will call \(z_1 \), in our huffman tree.

Now we have a new set, with the following probabilities.

\[\Pr[a] = 0.32 \]
\[\Pr[b] = 0.23 \]
\[\Pr[c] = 0.20 \]
\[\Pr[z_1] = 0.25 \]

(14)

we can repeat the process above for the next two least likely letters, which are \(c \) and \(b \). Using these, we will form a new node, \(z_2 \). We will assign 0 to \(c \) and 1 to \(b \).
This brings us to yet another distribution, with the following probabilities.

\[
\begin{align*}
\Pr[a] &= 0.32 \\
\Pr[z_2] &= 0.43 \\
\Pr[z_1] &= 0.25
\end{align*}
\] (15)

Let’s repeat again, with \(z_1 \) and \(a \). We will create a new node, \(z_3 \) and assign 0 to \(z_1 \) and 1 to \(a \).

This leaves us with two nodes left, which we can combine into the root node and have a complete tree. We can assign 0 to \(z_2 \) and 1 to \(z_3 \).

Therefore our code is the following.

\[
\begin{align*}
a &= 11 \\
b &= 01 \\
c &= 00 \\
d &= 101 \\
e &= 100
\end{align*}
\] (16)
We can also now find $\ell(f)$ and $H(x)$.

$$\ell(f) = \sum_i \text{len}(n_i) \Pr[n_i]$$ \hspace{1cm} (17)

$$\ell(f) = 2(0.32) + 2(0.23) + 2(0.20) + 3(0.15) + 3(0.15)$$ \hspace{1cm} (18)

$$\ell(f) = 2.25$$ \hspace{1cm} (19)

and now $H(X)$.

$$H(X) = -\sum_i \Pr[n_i] \log_2(\Pr[n_i])$$ \hspace{1cm} (20)

$$H(X) = -[0.32\log_2(0.32) + 0.23\log_2(0.32) + ... + 0.10\log_2(0.10)]$$ \hspace{1cm} (21)

$$H(X) = 2.22$$ \hspace{1cm} (22)