
Deep Reinforcement Learning

Sanket Lokegaonkar

Advanced Computer Vision (ECE 6554)

Outline

➢ The Why?
➢ Gliding Over All : An Introduction

○ Classical RL
○ DQN-Era

➢ Playing Atari with Deep Reinforcement Learning [2013]
○ 7 Atari Games

➢ Human-level control through deep reinforcement learning. [2015]
○ 49 Atari Games

➢ Brave New World

The Why? : Task

● Learning to behave optimally in a changing world
● Characteristics of the Task:

○ No Supervisor (Only Rewards)
○ Delayed Feedback
○ Non I.I.D data
○ Previous action affects the next state

● RL:
○ Learning by Interaction and your choices
○ Time-travelling back to the moment: Only to Live Again

● Reminds you of something:
○ Life - (Time Travelling Part)

The Why?: Hardness

 Imagine playing a new game whose rules you don’t know; after a hundred
hundred or so moves, your opponent announces, “You lose”.

‐Russell and Norvig

 Introduction to Artificial Intelligence

The Why?: Why do RL?

● So that we could move away from rule-based systems!!
● So that we could train quadcopters to fly and move !
● So that you could sip coffee all day and your bot will do the trading for you!
● Or Create intelligent robots for dumb tasks

Gliding Over All: An Introduction

Credits: David Silver

● At each step t, the agent
○ Executes action At
○ Receives observation Ot
○ Receives scalar reward Rt

● The environment,
○ Receives action At
○ Emits observation Ot+1
○ Emits scalar reward Rt+1

● t increments in every step

Environment and Agent

Credits: David Silver

Markov Decision Process

Credits: Andrej Karpathy’s blog

Markov Decision Process (MDP)
• Set of states S

• Set of actions A

• State transition probabilities p(s’ | s, a). This is the probability distribution over the state space given we
take action a in state s

• Discount factor γ in [0, 1]

• Reward function R: S x A -> set of real numbers

• For simplicity, assume discrete rewards

• Finite MDP if both S and A are finite

State Transition Probabilities
• Suppose the reward function is discrete and maps from S x A to W

• The state transition probability or probability of transitioning to state s’ given
current state s and action a in that state is given by:

Expected Rewards

• The expected reward for a given state-action
pair is given by:

Policy and Value Function

● Policy
○ Behavior Function
○ Mapping from state to action
○ Deterministic Policy : a=\Pi (s)
○ Stochastic Policy: (a |s) = Pr [At = a | St =s]

● Value Function
○ Prediction of total future Reward under a policy
○ Captures goodness/badness of states
○ Can be used to greedily select among the actions
○ v (s) = E [R t+1 + Rt+2 + 2 R t+3 … | St =s]

Credits: ICML DRL Tutorial

Action-Value Function (Q -function)

● Expected Return starting from state s, taking action A and then following
policy with as the discounting factor.

● Goodness of state given an action a

Credits: ICML DRL Tutorial

Optimal Action-Value Function

● Action -Value Function Equivalent Representation (Bellman Equation):
○ Q (s,a) = E [Rs + γ Q (s’,a’)]

● Optimal Value Function:
○ Q* (s,a) = max Q (s,a)

● If we know the optimal action-value function, the optimal policy would be:
○ *(s) = argmax a Q*(s,a)

● Optimal value maximizes over all decisions:
○ Q* (s,a) = E [Rs + γ maxa’ Q (s’,a’)]

Credits: ICML DRL Tutorial

Bellman Equation (1)
• The equation expresses the relationship between the value of a state s and the values of its successor

states

• The value of the next state must equal the discounted value of the expected next state, plus the reward
expected along the way

Bellman Equation (2)
• The value of state s is the expected value of the sum of time-discounted rewards

(starting at current state) given current state s

• This is expected value of r plus the sum of time-discounted rewards (starting at
successor state) over all successor states s’ and all next rewards r and over all
possible actions a in current state s

DEMO

http://cs.stanford.edu/people/karpathy/reinforcejs/index.html

Credits: [3]

Approaches in RL

● Value -Based RL (Value Iteration) (Model Free)

○ Estimate the value of optimal value function Q* (s,a)

● Policy -Based RL (Policy Iteration) (Model Free)

○ Search for the optimal policy *(s)

● Model-Based RL

○ Learn a model of the environment

○ Plan using the model

● “Deep” networks are used to approximate the functions

Model-free versus Model-based
• A model of the environment allows inferences to be made about how the environment will behave

• Example: Given a state and an action to be taken while in that state, the model could predict the next
state and the next reward

• Models are used for planning, which means deciding on a course of action by considering possible future
situations before they are experienced

• Model-based methods use models and planning. Think of this as modelling the dynamics p(s’ | s, a)

• Model-free methods learn exclusively from trial-and-error (i.e. no modelling of the environment)

• We focus on model-free methods today:

On-policy versus Off-policy
• An on-policy agent learns only about the policy that it is executing

• An off-policy agent learns about a policy or policies different from the one that it is executing

What is TD learning?
• Temporal-Difference learning = TD learning

• The prediction problem is that of estimating the value function for a policy π
• The control problem is the problem of finding an optimal policy π

*

• Given some experience following a policy π, update estimate v of vπ for non-terminal states occurring in
that experience

• Given current step t, TD methods wait until the next time step to update V(S
t
)

• Learn from partial returns

Epsilon-greedy Policy
• At each time step, the agent selects an action

• The agent follows the greedy strategy with probability 1 – epsilon

• The agent selects a random action with probability epsilon

• With Q-learning, the greedy strategy is the action a that maximises Q given S
t+1

Q-learning – Off-policy TD Control
• Similar to SARSA but off-policy updates

• The learned action-value function Q directly approximates the optimal action-value function q
*

independent of the policy being followed

• In update rule, choose action a that maximises Q given S
t+1

 and use the resulting Q-value (i.e. estimated
value given by optimal action-value function) plus the observed reward as the target

• This method is off-policy because we do not have a fixed policy that maps from states to actions. This is
why A

t+1
 is not used in the update rule

Deep Q-Networks (DQN)
• Introduced deep reinforcement learning

• It is common to use a function approximator Q(s, a; θ) to approximate the action-value function in
Q-learning

• Deep Q-Networks is Q-learning with a deep neural network function approximator called the Q-network

• Discrete and finite set of actions A

• Example: Breakout has 3 actions – move left, move right, no movement

• Uses epsilon-greedy policy to select actions

Q-Networks
• Core idea: We want the neural network to learn a non-linear hierarchy of features or feature

representation that gives accurate Q-value estimates

• The neural network has a separate output unit for each possible action, which gives the Q-value estimate
for that action given the input state

• The neural network is trained using mini-batch stochastic gradient updates and experience replay

State representation
• It is difficult to give the neural network a sequence of arbitrary length as input

• Use fixed length representation of sequence/history produced by a function ϕ(s
t
)

• Example: The last 4 image frames in the sequence of Breakout gameplay

Q-Network Training
• Sample random mini-batch of experience tuples uniformly at random from D

• Similar to Q-learning update rule but:

– Use mini-batch stochastic gradient updates

– The gradient of the loss function for a given iteration with respect to the parameter θ
i
 is the

difference between the target value and the actual value is multiplied by the gradient of the Q
function approximator Q(s, a; θ) with respect to that specific parameter

• Use the gradient of the loss function to update the Q function approximator

Value-based RL

● Q-function is represented as Q-network with weights :
● Q(s,a,w) = Q*(s,a)

Playing Atari with Deep Reinforcement Learning

Problem Statement:

● Input:
○ Raw Atari Frames 210 x160 pixel with 128-color pallete

● Output:
○ Possible Action to be taken

● Goal /Objective:
○ Optimal Policy with Maximal Reward

Playing Atari with Deep Reinforcement Learning

Architecture:

●

Playing Atari with Deep Reinforcement Learning

Architecture:

●

Playing Atari with Deep Reinforcement Learning

Architecture:

●

Playing Atari with Deep Reinforcement Learning

Algorithm:

Playing Atari with Deep Reinforcement Learning

MSE Loss with DQN:

●

Issues with Convergence of DQN:

● Non I.I.D data
● Oscillating policies with slight variations of Q-values
● Gradient descent can be large and unstable

Solutions to the Issues: Non-IID data

● Experience Replay (for handling non-iid data)
○ Build a memory storing N pairs of agent’s experience i.e (st,at,rt+1,st+1)
○ Sample random minibatch experience from the memory
○ Breaks correlation ~ brings back to iid domain

Solution to the Issues: How to prevent
oscillations

● Fix parameters used in Q-learning target
● Compute Q-learning targets wrt old fixed parameters θ-

● Loss Minimization Equation between Q-network and Q-learning targets
○ L(θ) = Es,a,r,s’ ~ D [r + ᵞ maxa’ Q(s’,a’,θ)]

● Periodically update fixed parameters θ-

Solution to the Issues: Unstable Gradient

● Clipping Rewards between [-1,1]
● Limits the scale of the derivatives
● Easier to use same learning rate over different Atari Games
● Disadvantage:

○ Invariant to different magnitudes of rewards

Evaluations

Atari Games Tried:

● Beam Rider
● Breakout
● Pong
● Q*bert
● Seaquest
● Space Invaders

Evaluations

Metrics:

● Average Total Reward Metric
● Average action-value

○ Collect a fixed set of states by running a random policy before training starts
○ Average of the maximum predicted Q for these states

Optimization:

● RMSProp with minibatches of size 32
● Behavior policy ϵ greedy (Annealed from 1 to 0.1 and fixed to 0.1 later)

Evaluations

Evaluations

● Average Total Reward
● Best Performing Episode

Analysis

Strengths:

● Q-learning over non-linear function approximators
● End-to-End Learning over multiple games
● SGD Training
● Seminal paper

Weakness:

● DQN limited to finite discrete actions
● Long Training
● Reward Clipping

Human-level control through deep reinforcement
learning
● Extending the DQN architecture to play 49 Atari 2600 arcade games
● No pretraining
● No game-specific training
● State: Transitions from 4 frames : Experience Replay
● Actions -18:

○ 9 directions of joystick
○ 9 directions + button

● Reward - Game Score

Architecture

Stats over 49 games

T-SNE Embedding (Last Hidden Layer)

Analysis

Strengths:

● End-to-End Learning over multiple games
● Beats human performance on most of the games
● Richer Rewards

Weakness:

● Long Training
● DQN limited to finite discrete actions

Brave New World

Optimizations on DQN Since Then

● Double DQN: Remove Upward bias caused by maxa Q(s,a, w)
○ Current Q-network w: Used to select actions
○ Older Q-network w-: Used to evaluate actions

● Prioritized replay : Weight experience according to TD-error (suprise)
○ Store experience in priority queue according to DQN error

● Asynchronous RL
○ Joint Training using Parameter Sharing on Distributed Scale
○ GORILA

Credits: ICML DRL Tutorial

What are Policy Gradient Methods?
• Before: Learn the values of actions and then select actions based on their estimated action-values. The

policy was generated directly from the value function

• We want to learn a parameterised policy that can select actions without consulting a value function. The
parameters of the policy are called policy weights

• A value function may be used to learn the policy weights but this is not required for action selection

• Policy gradient methods are methods for learning the policy weights using the gradient of some
performance measure with respect to the policy weights

• Policy gradient methods seek to maximise performance and so the policy weights are updated using
gradient ascent

Policy-based Reinforcement Learning
• Search directly for the optimal policy π*

• Can use any parametric supervised machine learning model to learn policies π(a |s; θ) where θ represents
the learned parameters

• Recall that the optimal policy is the policy that achieves maximum future return

Policy-Based RL

● Represent policies by deep networks instead of Q-function
○ a = π(a | s, u) Stochastic Policies
○ A = π(s, u) Deterministic Policies
○ where u is the parameters of the deep network

● Objective function for the network
○ L(u) = E [r 1 + γr 2 + γ2r 3 | π(. , u)]

● SGD Optimization
● Allows Continuous and Discrete Control
● Known to get stuck in Local minima

Credits: ICML DRL Tutorial

Algorithms in Policy-Based RL

● REINFORCE
○ Episodic updates
○ Maximize the loss of expected reward under the objective
○ while (true) run_episode(policy) update(policy) end;

● Actor-Critic
○ Updates at each step
○ Critic approximates the value function
○ Actor approximates the policy

● Asynchronous Advantage Function Actor-Critic
○ Uses Advantage Function Estimate for state-actuib. A(s,a,w) = Q(s,a,w) -V(s)
○ Replacing the need of replay memory by using parallel agents running on CPU
○ Relies on different exploration behavior of the parallel agents
○ Outperforms the conventional method

Credits: ICML DRL Tutorial

What is Asynchronous Reinforcement Learning?

• Use asynchronous gradient descent to optimise controllers

• This is useful for deep reinforcement learning where the controllers are deep neural networks, which take
a long time to train

• Asynchronous gradient descent speeds up the learning process

• Can use one multi-core CPU to train deep neural networks asynchronously instead of multiple GPUs

Parallelism (1)
• Asynchronously execute multiple agents in parallel on multiple instances of the environment

• This parallelism decorrelates the agents’ data into a more stationary process since at any given time-step,
the agents will be experiencing a variety of different states

• This approach enables a larger spectrum of fundamental on-policy and off-policy reinforcement learning
algorithms to be applied robustly and effectively using deep neural networks

• Use asynchronous actor-learners (i.e. agents). Think of each actor-learner as a thread

• Run everything on a single multi-core CPU to avoid communication costs of sending gradients and
parameters

Parallelism (2)
• Multiple actor-learners running in parallel are likely to be exploring different parts of the environment

• We can explicitly use different exploration policies in each actor-learner to maximise this diversity

• By running different exploration policies in different threads, the overall changes made to the parameters
by multiple actor-learners applying updates in parallel are less likely to be correlated in time than a single
agent applying online updates

No Experience Replay
• No need for a replay memory. We instead rely on parallel actors employing different exploration policies

to perform the stabilising role undertaken by experience replay in the DQN training algorithm

• Since we no longer rely on experience replay for stabilising learning, we are able to use on-policy
reinforcement learning methods to train neural networks in a stable way

Video Demo : A3C Labryinth

http://www.youtube.com/watch?v=nMR5mjCFZCw

Video Demo : DQN Doom

http://www.youtube.com/watch?v=re6hkcTWVUY

Scope / Future

● Multi-agent Deep RL
○ Share Parameters!!! (Naive approach)

● Hierarchical Deep Reinforcement Learning
○ Road to General AI!

Quotes from the Maestro

If intelligence was a cake, unsupervised learning would be the cake, supervised
learning would be the icing on the cake, and reinforcement learning would be the
cherry on the cake.

-Yann Lecun

Reference Zone
● http://www.cs.princeton.edu/~andyz/pacmanRL
● ICML Deep RL Tutorial : http://icml.cc/2016/tutorials/deep_rl_tutorial.pdf
● Andrej Karpathy’s blog: http://karpathy.github.io/
● Playing Atari with Deep Reinforcement Learning. V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D. Wierstra, M. Riedmiller, NIPS

workshop 2013
● Human-level control through deep reinforcement learning. Mnih et al. Nature 2015
● https://www.cs.princeton.edu/courses/archive/spring17/cos598F/lectures/RL.pptx

http://www.cs.princeton.edu/~andyz/pacmanRL
http://www.cs.princeton.edu/~andyz/pacmanRL
http://icml.cc/2016/tutorials/deep_rl_tutorial.pdf
http://karpathy.github.io/
https://www.cs.princeton.edu/courses/archive/spring17/cos598F/lectures/RL.pptx
https://www.cs.princeton.edu/courses/archive/spring17/cos598F/lectures/RL.pptx
https://www.cs.princeton.edu/courses/archive/spring17/cos598F/lectures/RL.pptx

