Projective Geometry and Camera Models

Computer Vision
Jia-Bin Huang, Virginia Tech

Many slides from S. Seitz and D. Hoiem
Administrative stuffs

• HWs
 • HW 1 will be back this week
 • HW 2 due 11:55 PM on Oct 3.
 • Submit your results on shape alignment: link
 • Frequently asked questions for HW 2

• Think about your final projects
 • work in groups of 2-4
 • should evince independent effort to learn about a new topic, try something new, or apply to an application of interest
 • Proposals will be due Oct 23
function featureTracking
% Main function for feature tracking
folder = '.\images';
im = readImages(folder, 0:50);

tau = 0.06; % Threshold for harris corner detection
[pt_x, pt_y] = getKeypoints(im{1}, tau); % Prob 1.1: keypoint detection

ws = 7; % Tracking ws x ws patches
[track_x, track_y] = ... % Prob 1.2 Keypoint tracking
 trackPoints(pt_x, pt_y, im, ws);

% Visualizing the feature tracks on the first and the last frame
figure(2), imagesc(im{1}), hold off, axis image, colormap gray
hold on, plot(track_x', track_y', 'r');
HW 2 – Feature/Keypoint detection

• Compute second moment matrix

\[
\mu(\sigma_I, \sigma_D) = g(\sigma_I)^* \begin{bmatrix}
I_x^2(\sigma_D) & I_xI_y(\sigma_D) \\
I_xI_y(\sigma_D) & I_y^2(\sigma_D)
\end{bmatrix}
\]

• Harris corner criterion

\[
har = \det[\mu(\sigma_I, \sigma_D)] - \alpha[\text{trace}(\mu(\sigma_I, \sigma_D))^2] = \\
g(I_x^2)g(I_y^2) - [g(I_xI_y)]^2 - \alpha[g(I_x^2) + g(I_y^2)]^2
\]

• Threshold

\[
\alpha = 0.04
\]

• Non-maximum suppression
function [keyXs, keyYs] = getKeypoints(im, tau)
% im: input image; tau: threshold
% keyXs, keyYs: detected keypoints, with dimension [N] x [1]

% 0. Smooth image (optional)

% 1. Compute image gradients. Hint: can use “gradient”

% 2. Compute Ix*Ix, Iy*Iy, Ix*Iy

% 3. Smooth Ix*Ix, Iy*Iy, Ix*Iy (locally weighted average)

% 4. Compute Harris corner score. Normalize the max to 1

% 5. Non-maximum suppression. Hint: use “ordfilt2”

% 6. Find positions whose values larger than tau. Hint: use “find”
end
function [track_x, track_y] = trackPoints(pt_x, pt_y, im, ws)
% Tracking initial points (pt_x, pt_y) across the image sequence
% track_x: [Number of keypoints] x [nim]
% track_y: [Number of keypoints] x [nim]

% Initialization
N = numel(pt_x); % Number of keypoints
nim = numel(im); % Number of images
track_x = zeros(N, nim); % Number of keypoints
track_y = zeros(N, nim); % Number of keypoints
track_x(:, 1) = pt_x(:);
track_y(:, 1) = pt_y(:);

for t = 1:nim-1 % Tracking points from t to t+1
 [track_x(:, t+1), track_y(:, t+1)] = ...
 getNextPoints(track_x(:, t), track_y(:, t), im{t}, im{t+1}, ws);
end
Iterative L-K algorithm

1. Initialize \((x', y') = (x, y)\)

2. Compute \((u, v)\) by
 \[
 \begin{bmatrix}
 \sum I_x I_x & \sum I_x I_y \\
 \sum I_x I_y & \sum I_y I_y
 \end{bmatrix}
 \begin{bmatrix}
 u \\
 v
 \end{bmatrix}
 =
 -\begin{bmatrix}
 \sum I_x I_t \\
 \sum I_y I_t
 \end{bmatrix}
 \]
 2nd moment matrix for feature patch in first image
 displacement

3. Shift window by \((u, v)\):
 \[
 x' = x' + u; \quad y' = y' + v;
 \]

4. Recalculate \(I_t\)

5. Repeat steps 2-4 until small change
 • Use interpolation for subpixel values

\[
I_t = I(x', y', t+1) - I(x, y, t)
\]
function [x2, y2] = getNextPoints(x, y, im1, im2, ws) % Iterative Lucas-Kanade feature tracking
% (x, y) : initialized keypoint position in im1; (x2, y2): tracked keypoint positions in im2
% ws: patch window size

% 1. Compute gradients from Im1 (get Ix and Iy)
% 2. Grab patches of Ix, Iy, and im1.
Hint 1: use “[X, Y] = meshgrid(-hw:hw,-hw:hw);” to get patch index, where hw = floor(ws/2);
Hint 2: use “interp2” to sample non-integer positions.

for iter = 1:numIter % 5 iterations should be sufficient
 % Check if tracked patch are outside the image. Only track valid patches.
 % For each keypoint
 % - grab patch1 (centered at x1, y1), grab patch2 (centered at x2,y2)
 % - compute It = patch2 – patch1
 % - grab Ix, Iy (centered at x1, y1)
 % - Set up matrix A and vector b
 % - Solve linear system d = A\b.
 % - x2(p)=x2(p)+d(1); y2(p)=y2(p)+d(2); -> Update the increment
end
HW 2 – Shape Alignment

- Global transformation (similarity, affine, perspective)
- Iterative closest point algorithm
Fitting an affine transformation

\[
\begin{bmatrix}
 x_i & y_i & 0 & 0 & 1 & 0 \\
 0 & 0 & x_i & y_i & 0 & 1 \\
 \vdots & \vdots & \vdots & \vdots & \vdots & \vdots
\end{bmatrix}
\begin{bmatrix}
 m_1 \\
 m_2 \\
 m_3 \\
 m_4 \\
 t_1 \\
 t_2
\end{bmatrix}
= \begin{bmatrix}
 x_i' \\
 y_i'
\end{bmatrix}
\]

• Linear system with six unknowns
• Each match gives us two linearly independent equations: need at least three to solve for the transformation parameters
function Tfm = align_shape(im1, im2)
% im1: input edge image 1
% im2: input edge image 2

% 1. Find edge points in im1 and im2. Hint: use “find”
% 2. Compute initial transformation (e.g., compute translation and scaling by center of mass, variance within each image)

for i = 1: 50

% 3. Get nearest neighbors: for each point pᵢ find corresponding match
match(i) = argmin_j dist(pᵢ, qⱼ)

% 4. Compute transformation T based on matches

% 5. Warp points p according to T

end
HW 2 – Local Feature Matching

• Implement distance ratio test feature matching algorithm
function featureMatching

im1 = imread('stop1.jpg');
im2 = imread('stop2.jpg');

% Load pre-computed SIFT features
load('SIFT_features.mat');

% Descriptor1, Descriptor2: SIFT features
% Frame1, Frame2: position, scale, rotation

% For every descriptor in im1, find the 1st nearest neighbor and the 2nd nearest neighbor in im2.

% Compute distance ratio score.

% Threshold and get the matches: a 2 x N array of indices that indicates which keypoints from image1 match which points in image 2

figure(1), hold off, clf
plotmatches(im2double(im1), im2double(im2), Frame1, Frame2, matches); % Display the matched keypoints
Review: Interpreting Intensity

• **Light and color**
 – What an image records

• **Filtering in spatial domain**
 • Filtering = weighted sum of neighboring pixels
 • Smoothing, sharpening, measuring texture

• **Filtering in frequency domain**
 • Filtering = change frequency of the input image
 • Denoising, sampling, image compression

• **Image pyramid and template matching**
 • Filtering = a way to find a template
 • Image pyramids for coarse-to-fine search and multi-scale detection

• **Edge detection**
 • Canny edge = smooth -> derivative -> thin -> threshold -> link
 • Finding straight lines, binary image analysis
Review: Correspondence and Alignment

• **Interest points**
 • Find *distinct* and *repeatable* points in images
 • Harris-> corners, DoG -> blobs
 • SIFT -> feature descriptor

• **Feature tracking and optical flow**
 • Find motion of a keypoint/pixel over time
 • Lucas-Kanade:
 • brightness consistency, small motion, spatial coherence
 • Handle large motion:
 • iterative update + pyramid search

• **Fitting and alignment**
 • find the transformation parameters that best align matched points

• **Object instance recognition**
 • Keypoint-based object instance recognition and search
Perspective and 3D Geometry

• **Projective geometry and camera models**
 • What’s the mapping between image and world coordinates?

• **Single view metrology and camera calibration**
 • How can we measure the size of 3D objects in an image?
 • How can we estimate the camera parameters?

• **Photo stitching**
 • What’s the mapping from two images taken without camera translation?

• **Epipolar Geometry and Stereo Vision**
 • What’s the mapping from two images taken with camera translation?

• **Structure from motion**
 • How can we recover 3D points from multiple images?
Next two classes:
Single-view Geometry

- How tall is this woman?
- How high is the camera?
- What is the camera rotation?
- What is the focal length of the camera?

Which ball is closer?
Today’s class
Mapping between image and world coordinates

• Pinhole camera model

• Projective geometry
 • Vanishing points and lines

• Projection matrix

\[\mathbf{x} = \mathbf{K}[\mathbf{R} \hspace{1em} \mathbf{t}] \mathbf{X} \]
Image formation

Let’s design a camera

– Idea 1: put a piece of film in front of an object
– Do we get a reasonable image?

Slide source: Seitz
Pinhole camera

Idea 2: add a barrier to block off most of the rays
 • This reduces blurring
 • The opening known as the aperture
Pinhole camera

\[f = \text{focal length} \]
\[c = \text{center of the camera} \]

Figure from Forsyth
Camera obscura: the pre-camera

- First idea: Mo-Ti, China (470BC to 390BC)
- First built: Alhazen, Iraq/Egypt (965 to 1039AD)

Illustration of Camera Obscura

Freestanding camera obscura at UNC Chapel Hill

Photo by Seth Ilys
Camera Obscurea used for Tracing

Lens Based Camera Obscurea, 1568
First Photograph

Oldest surviving photograph
- Took 8 hours on pewter plate

Photograph of the first photograph

Joseph Niepce, 1826

Stored at UT Austin

Niepce later teamed up with Daguerre, who eventually created Daguerrotypes
Dimensionality Reduction Machine (3D to 2D)

3D world

2D image

Point of observation

Figures © Stephen E. Palmer, 2002
Projection can be tricky...
Projection can be tricky...

Making of 3D sidewalk art: http://www.youtube.com/watch?v=3SNYtd0Ayt0
Projective Geometry

What is lost?

• Length

Who is taller?

Which is closer?
Length is not preserved
Projective Geometry

What is lost?

• Length
• Angles

Parallel?
Perpendicular?
Projective Geometry

What is preserved?

• Straight lines are still straight
Vanishing points and lines

Parallel lines in the world intersect in the image at a “vanishing point”
Vanishing points
Vanishing points and lines

- The projections of parallel 3D lines intersect at a **vanishing point**
- The projection of parallel 3D planes intersect at a **vanishing line**
- If a set of parallel 3D lines are also parallel to a particular plane, their vanishing point will lie on the vanishing line of the plane
- Not all lines that intersect are parallel
- Vanishing point <-> 3D direction of a line
- Vanishing line <-> 3D orientation of a surface
Vanishing points and lines

Vertical vanishing point (at infinity)

Vanishing point

Vanishing line

Slide from Efros, Photo from Criminisi
Vanishing points and lines

Photo from online Tate collection
Note on estimating vanishing points

Use multiple lines for better accuracy
 ... but lines will not intersect at exactly the same point in practice
One solution: take mean of intersecting pairs
 ... bad idea!
Instead, minimize angular differences
Vanishing objects
Projection: world coordinates \rightarrow image coordinates

$$\mathbf{p} = \begin{bmatrix} u \\ v \end{bmatrix} = \begin{bmatrix} -f \frac{X}{Z} \\ -f \frac{Y}{Z} \end{bmatrix}$$

$$\mathbf{P} = \begin{bmatrix} X \\ Y \\ Z \end{bmatrix}$$
Homogeneous coordinates

• Is this a linear transformation?
 – no—division by z is nonlinear

Converting to homogeneous coordinates

$$(x, y) \Rightarrow \begin{bmatrix} x \\ y \\ 1 \end{bmatrix} \quad (x, y, z) \Rightarrow \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix}$$

homogeneous image coordinates

homogeneous scene coordinates

Converting from homogeneous coordinates

$$\begin{bmatrix} x \\ y \\ w \end{bmatrix} \Rightarrow (x/w, y/w) \quad \begin{bmatrix} x \\ y \\ z \\ w \end{bmatrix} \Rightarrow (x/w, y/w, z/w)$$
Homogeneous coordinates

Invariant to scaling

\[
\begin{bmatrix}
 x \\
 y \\
 w
\end{bmatrix}
= \begin{bmatrix}
 kx \\
 ky \\
 kw
\end{bmatrix}
\Rightarrow
\begin{bmatrix}
 \frac{kx}{kw} \\
 \frac{ky}{kw} \\
 \frac{w}{w}
\end{bmatrix}
= \begin{bmatrix}
 \frac{x}{w} \\
 \frac{y}{w}
\end{bmatrix}
\]

Homogeneous Coordinates Cartesian Coordinates

Point in Cartesian is ray in Homogeneous
Basic geometry in homogeneous coordinates

• Append 1 to pixel coordinate to get homogeneous coordinate
 \[p_i = \begin{bmatrix} u_i \\ v_i \\ 1 \end{bmatrix} \]

• Line equation: \(\mathit{line}_i^\top p = 0 \)
 \[au + bv + c = 0 \quad \mathit{line}_i = [a \ b \ c]^\top \]

• Line given by cross product of two points
 \(\mathit{line}_{ij} = p_i \times p_j \)

• Intersection of two lines given by cross product of the lines
 \(q_{ij} = \mathit{line}_i \times \mathit{line}_j \)

• Three points lies on the same line
 \[p_k^\top (p_i \times p_j) = 0 \]

• Three lines intersect at the same point
 \[\mathit{line}_k^\top (\mathit{line}_i \times \mathit{line}_j) = 0 \]
Another problem solved by homogeneous coordinates

Intersection of parallel lines

Cartesian: \((\text{Inf, Inf})\)
Homogeneous: \((1, 1, 0)\)

Cartesian: \((\text{Inf, Inf})\)
Homogeneous: \((1, 2, 0)\)
Interlude: where can this be useful?
Applications

Object Recognition (CVPR 2006)
Applications

Single-view reconstruction (SIGGRAPH 2005)
Applications

Getting spatial layout in indoor scenes (ICCV 2009)
Applications

Image Completion [SIGGRAPH14]
- Revealing unseen pixels
Applications

Inserting synthetic objects into images: http://vimeo.com/28962540
Applications

Creating detailed and complete 3D scene models from a single view
Two-mins break
Perspective Projection Matrix

- Projection is a matrix multiplication using homogeneous coordinates

$$\begin{bmatrix}
x \\
y \\
z \\
1
\end{bmatrix} = \begin{bmatrix}
\alpha & \beta & \gamma & \delta \\
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 1
\end{bmatrix} \Rightarrow \left(f \frac{x}{z}, f \frac{y}{z} \right)$$

divide by the third coordinate

In practice: lots of coordinate transformations...

$$\begin{bmatrix}
2D \\
point \ (3x1)
\end{bmatrix} = \begin{bmatrix}
\text{Camera to} \\
\text{pixel coord.} \\
\text{trans. matrix} \\
(3x3)
\end{bmatrix} \begin{bmatrix}
\text{Perspective} \\
\text{projection matrix} \\
(3x4)
\end{bmatrix} \begin{bmatrix}
\text{World to} \\
\text{camera coord.} \\
\text{trans. matrix} \\
(4x4)
\end{bmatrix} \begin{bmatrix}
3D \\
point \ (4x1)
\end{bmatrix}$$
Projection matrix

\[x = K[R \ t]X \]

x: Image Coordinates: (u,v,1)

K: Intrinsic Matrix (3x3)

R: Rotation (3x3)

t: Translation (3x1)

X: World Coordinates: (X,Y,Z,1)
Projection matrix

Intrinsic Assumptions
• Unit aspect ratio
• Optical center at (0,0)
• No skew

Extrinsic Assumptions
• No rotation
• Camera at (0,0,0)

\[x = K \begin{bmatrix} 1 & 0 \end{bmatrix} X \]

\[w \begin{bmatrix} u \\ v \\ 1 \end{bmatrix} = \begin{bmatrix} f & 0 & 0 & 0 \\ 0 & f & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix} \]
Remove assumption: known optical center

Intrinsic Assumptions
- Unit aspect ratio
- No skew

Extrinsic Assumptions
- No rotation
- Camera at (0,0,0)

\[
x = K \begin{bmatrix} I & 0 \end{bmatrix} X
\]

\[
\begin{bmatrix} u \\ v \\ 1 \end{bmatrix} = \begin{bmatrix} f & 0 & u_0 & 0 \\ 0 & f & v_0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix}
\]
Remove assumption: square pixels

Intrinsic Assumptions
• No skew

Extrinsic Assumptions
• No rotation
• Camera at (0,0,0)

\[
\mathbf{X} = \mathbf{K} \begin{bmatrix} \mathbf{I} & \mathbf{0} \end{bmatrix} \mathbf{X} \quad \mathbf{w} \begin{bmatrix} u \\ v \\ 1 \end{bmatrix} = \begin{bmatrix} \alpha & 0 & u_0 & 0 \\ 0 & \beta & v_0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix}
\]
Remove assumption: non-skewed pixels

Intrinsic Assumptions

Extrinsic Assumptions

- No rotation
- Camera at (0,0,0)

\[\mathbf{x} = \mathbf{K} \begin{bmatrix} 1 & 0 \end{bmatrix} \mathbf{X}\]

\[\begin{bmatrix} u \\ v \\ 1 \end{bmatrix} = \begin{bmatrix} \alpha & s & u_0 & 0 \\ 0 & \beta & v_0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix}\]

Note: different books use different notation for parameters
Oriented and Translated Camera
Allow camera translation

Intrinsic Assumptions

Extrinsic Assumptions

• No rotation

\[x = K[I \quad t]X \quad \rightarrow \quad w \begin{bmatrix} u \\ v \\ 1 \end{bmatrix} = \begin{bmatrix} \alpha & 0 & u_0 \\ 0 & \beta & v_0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & t_x \\ 0 & 1 & 0 & t_y \\ 0 & 0 & 1 & t_z \end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix} \]
3D Rotation of Points

Rotation around the coordinate axes, \textit{counter-clockwise}:

\[
R_x(\alpha) = \begin{bmatrix}
1 & 0 & 0 \\
0 & \cos \alpha & -\sin \alpha \\
0 & \sin \alpha & \cos \alpha \\
\end{bmatrix}
\]

\[
R_y(\beta) = \begin{bmatrix}
\cos \beta & 0 & \sin \beta \\
0 & 1 & 0 \\
-\sin \beta & 0 & \cos \beta \\
\end{bmatrix}
\]

\[
R_z(\gamma) = \begin{bmatrix}
\cos \gamma & -\sin \gamma & 0 \\
\sin \gamma & \cos \gamma & 0 \\
0 & 0 & 1 \\
\end{bmatrix}
\]
Allow camera rotation

\[
x = K [R \hspace{1em} t] X
\]

\[
w \begin{bmatrix} u \\ v \\ 1 \end{bmatrix} = \begin{bmatrix} \alpha & s & u_0 \\ 0 & \beta & v_0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} r_{11} & r_{12} & r_{13} & t_x \\ r_{21} & r_{22} & r_{23} & t_y \\ r_{31} & r_{32} & r_{33} & t_z \end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix}
\]
Degrees of freedom

\[x = K [R \ t] X \]
Vanishing Point = Projection from Infinity

\[p = K [R \ t] \begin{bmatrix} x \\ y \\ z \\ 0 \end{bmatrix} \Rightarrow p = KR \begin{bmatrix} x \\ y \\ z \end{bmatrix} \Rightarrow p = K \begin{bmatrix} x_R \\ y_R \\ z_R \end{bmatrix} \]

\[
\begin{bmatrix}
u \\
v \\
n
\end{bmatrix} = \begin{bmatrix}
f & 0 & u_0 \\
0 & f & v_0 \\
0 & 0 & 1
\end{bmatrix} \begin{bmatrix}
x_R \\
y_R \\
z_R
\end{bmatrix} \Rightarrow
\begin{align*}
u &= \frac{fx_R}{z_R} + u_0 \\
v &= \frac{fy_R}{z_R} + v_0
\end{align*}
\]
Scaled Orthographic Projection

- Special case of perspective projection
 - Object dimensions are small compared to distance to camera
- Also called “weak perspective”

\[
\begin{bmatrix}
 u \\
 v \\
 1
\end{bmatrix} =
\begin{bmatrix}
 f & 0 & 0 & 0 \\
 0 & f & 0 & 0 \\
 0 & 0 & 0 & s \\
 1
\end{bmatrix}
\begin{bmatrix}
 x \\
 y \\
 z \\
 1
\end{bmatrix}
\]
Orthographic Projection - Examples
Orthographic Projection - Examples
Applications in object detection

Far field: object appearance doesn’t change as objects translate

Near field: object appearance changes as objects translate
Beyond Pinholes: Radial Distortion

• Common in wide-angle lenses or for special applications (e.g., security)
• Creates non-linear terms in projection
• Usually handled by through solving for non-linear terms and then correcting image

Image from Martin Habbecke
Things to remember

• Vanishing points and vanishing lines

• Pinhole camera model and camera projection matrix

• Homogeneous coordinates
Next class
Applications of camera model and projective geometry

• Recovering the camera intrinsic and extrinsic parameters from an image

• Measuring size in the world

• Projecting from one plane to another