Object Detection

Computer Vision Yuliang Zou, Virginia Tech

Administrative stuffs

• HW 4 due 11:59pm on Wed, November 8

- HW 3 grades are out
 - Average: 116.78, Median: 132.5
 - Excellent reports: Pavan Kumar Gundu, Vidur Kakar, Tarun Kathuria, Prashant Kumar, Snehal More, Naresh Nagabushan, Sudha Ravali Yellapantula
- Final project proposal
 - Feedback via emails
 - Will also set up additional office hours for discussion

Roadmap

Today's class

Overview of object category detection

- Traditional methods
 - Dalal-Triggs detector (basic concept)
 - Viola-Jones detector (cascades, integral images)
- Deep learning methods
 - Review of CNN
 - Two-stage: R-CNN
 - One-stage: YOLO, SSD, Retina Net

Demo

Object Category Detection

- Focus on object search: "Where is it?"
- Build templates that quickly differentiate object patch from background patch

Challenges in modeling the object class

Illumination

Object pose

Clutter

Occlusions

Intra-class appearance

Viewpoint

Challenges in modeling the non-object class

True Detections

Bad Localization

Confused with Similar Object

Misc. Background

Confused with Dissimilar Objects

General Process of Object Recognition

Specifying an object model

1. Statistical Template in Bounding Box

- Object is some (x,y,w,h) in image
- Features defined wrt bounding box coordinates

Image

Template Visualization

Specifying an object model

2. Articulated parts model

- Object is configuration of parts
- Each part is detectable

Specifying an object model

Hybrid template/parts model

Detections

Template Visualization

root filters

coarse resolution

part filters finer resolution

deformation models

General Process of Object Recognition

Generating hypotheses

1. Sliding window

Test patch at each location and scale

Generating hypotheses

2. Voting from patches/keypoints

Generating hypotheses

3. Region-based proposal

Endres Hoiem 2010

General Process of Object Recognition

Specify Object Model

Generate Hypotheses

Score Hypotheses

Resolve Detections

Mainly-gradient based or CNN features, usually based on summary representation, many classifiers

General Process of Object Recognition

Rescore each proposed object based on whole set

Resolving detection scores

1. Non-max suppression

Resolving detection scores

2. Context/reasoning

(g) Car Detections: Local (h) Ped Detections: Local

Object category detection in computer vision

Goal: detect all pedestrians, cars, monkeys, etc in image

Basic Steps of Category Detection

1. Align

- E.g., choose position, scale orientation
- How to make this tractable?

2. Compare

- Compute similarity to an example object or to a summary representation
- Which differences in appearance are important?

Sliding window: a simple alignment solution

Each window is separately classified

Statistical Template

 Object model = sum of scores of features at fixed positions

Example: Dalal-Triggs detector

- Extract fixed-sized (64x128 pixel) window at each position and scale
- 2. Compute HOG (histogram of gradient) features within each window
- Score the window with a linear SVM classifier
- 4. Perform non-maxima suppression to remove overlapping detections with lower scores

Person/

→ non-person classification

Tested with

- RGB
- LAB

Slightly better performance vs. grayscale

Grayscale

Gamma Normalization and Compression

- Square root
- Very slightly better performance vs. no adjustment

• Log

Histogram of gradient orientations

Orientation: 9 bins (for unsigned angles)

Histograms in 8x8 pixel cells

- Votes weighted by magnitude
- Bilinear interpolation between cells

Normalize with respect to surrounding cells

$$L2-norm: v \longrightarrow v/\sqrt{||v||_2^2+\epsilon^2}$$

$$0.16 = w^T x - b$$

$$sign(0.16) = 1$$

Detection examples

Viola-Jones sliding window detector

Fast detection through two mechanisms

- Quickly eliminate unlikely windows
- Use features that are fast to compute

Cascade for Fast Detection

- Choose threshold for low false negative rate
- Fast classifiers early in cascade
- Slow classifiers later, but most examples don't get there

Features that are fast to compute

- "Haar-like features"
 - Differences of sums of intensity
 - Thousands, computed at various positions and scales within detection window

Integral Images

• ii = cumsum(cumsum(im, 1), 2)

ii(x,y) = Sum of the values in the grey region

How to compute B-A?

How to compute A+D-B-C?

Top 2 selected features

Viola Jones Results

Speed = 15 FPS (in 2001)

False detections							
Detector	10	31	50	65	78	95	167
Viola-Jones	76.1%	88.4%	91.4%	92.0%	92.1%	92.9%	93.9%
Viola-Jones (voting)	81.1%	89.7%	92.1%	93.1%	93.1%	93.2 %	93.7%
Rowley-Baluja-Kanade	83.2%	86.0%	-	-	-	89.2%	90.1%
Schneiderman-Kanade	-	-	-	94.4%	-	-	-
Roth-Yang-Ahuja	-	-	-	-	(94.8%)	-	-

Something to think about...

- Sliding window detectors work
 - very well for faces
 - fairly well for cars and pedestrians
 - badly for cats and dogs

Why are some classes easier than others?

Recap – Convolutional layer

- Convolutional layer
 - 1. Local connectivity
 - 2. Weight sharing

Local Connectivity

Hidden layer

Input layer

Global connectivity

Local connectivity

- # input units (neurons): 7
- # hidden units: 3
- Number of parameters
 - Global connectivity: 3 x 7 = 21
 - Local connectivity: $3 \times 3 = 9$

Weight Sharing

Hidden layer

Input layer

Without weight sharing

With weight sharing

- # input units (neurons): 7
- # hidden units: 3
- Number of parameters
 - Without weight sharing: $3 \times 3 = 9$
 - With weight sharing: $3 \times 1 = 3$

How it works?

Credit: Andrej Karpathy

Live demo: http://cs231n.github.io/assets/conv-demo/index.html

Recap – Fully-connected layer

- Each output node is connected to all the input nodes
- Fixed number of input nodes
- Fixed number of output nodes

Recap – Pooling layer

- Reduce the feature size
- Introduce a bit invariance (translation, rotation)

Recap – Activation

Introduce the non-linearity

Put them all together

 Train the deep convolutional neural net with simple chain-rule (a.k.a back propagation)

Tricks - Dropout

- Randomly set some nodes to zero during training
 - i.e. Each node will be set to zero with probability p
 - Need to rescale the output, divided by (1-p)
- Usually put it after fc layers, to avoid overfitting

Tricks – Batch Normalization

```
Input: Values of x over a mini-batch: \mathcal{B} = \{x_{1...m}\};
      Parameters to be learned: \gamma, \beta
Output: \{y_i = BN_{\gamma,\beta}(x_i)\}
```

More robust to bad initialization

Deep learning methods

• Let's have a 2-min break!

Apply a CNN to many different crops of the image, CNN classifies each crop as object or background

Dog? NO Cat? NO Background? YES

Apply a CNN to many different crops of the image, CNN classifies each crop as object or background

Dog? YES
Cat? NO
Background? NO

Apply a CNN to many different crops of the image, CNN classifies each crop as object or background

Dog? YES Cat? NO Background? NO

Apply a CNN to many different crops of the image, CNN classifies each crop as object or background

Dog? NO Cat? YES Background? NO

What could be the problems?

- What could be the problems?
 - Suppose we have a 600 x 600 image, if sliding window size is 20 x 20, then have (600-20+1) x (600-20+1) = ~330,000 windows

- What could be the problems?
 - Suppose we have a 600 x 600 image, if sliding window size is 20 x 20, then have (600-20+1) x (600-20+1) = ~330,000 windows
 - Sometimes we want to have more accurate results -> multiscale detection
 - Resize image
 - Multi-scale sliding window

- What could be the problems?
 - Suppose we have a 600 x 600 image, if sliding window size is 20 x 20, then have (600-20+1) x (600-20+1) = ~330,000 windows
 - Sometimes we want to have more accurate results -> multiscale detection
 - Resize image
 - Multi-scale sliding window
 - For each image, we need to do the forward pass in the CNN for ~330,000 times. -> Slow!!!

Region Proposal

Solution

- Use some fast algorithms to filter out some regions first, only feed the potential region (region proposals) into CNN
- E.g. selective search

R-CNN (Girshick et al. CVPR 2014)

- Replace sliding windows with "selective search" region proposals (Uijilings et al. IJCV 2013)
- Extract rectangles around regions and resize to 227x227
- Extract features with fine-tuned CNN (that was initialized with network trained on ImageNet before training)
- Classify last layer of network features with SVM, refine bounding box localization (bbox regression) simultaneously

http://arxiv.org/pdf/1311.2524.pdf

Bounding Box Regression

Intuition

- If you observe part of the object, according to the seen examples, you should be able to refine the localization
- E.g. given the red box below, since you've seen many airplanes, you know this is not a good localization, you will adjust it to the green one

Bounding Box Regression

Intuition

- If you observe part of the object, according to the seen examples, you should be able to refine the localization
- E.g. given the red box below, since you've seen many airplanes, you know this is not a good localization, you will adjust it to the green one

R-CNN (Girshick et al. CVPR 2014)

What could be the problems?

R-CNN (Girshick et al. CVPR 2014)

- What could be the problems?
 - Repetitive computation! For overlapping regions, we feed it multiple times into CNN

Fast R-CNN (Girshick ICCV 2015)

Solution

 Why not feed the whole image into CNN only once! Then crop features instead of image itself

Fast R-CNN (Girshick ICCV 2015)

- How to crop features?
 - Since we have fully-connected layers, the size of feature map for each bounding box should be a fixed number

Fast R-CNN (Girshick et al. ICCV 2015)

- How to crop features?
 - Since we have fully-connected layers, the size of feature map for each bounding box should be a fixed number
 - Resize/Interpolate the feature map as fixed size?
 - Not optimal. This operation is hard to backprop -> we cannot train the conv layers for this problem

https://arxiv.org/pdf/1504.08083.pdf

Fast R-CNN (Girshick et al. ICCV 2015)

- How to crop features?
 - Since we have fully-connected layers, the size of feature map for each bounding box should be a fixed number
 - Resize/Interpolate the feature map as fixed size?
 - Not optimal. This operation is hard to backprop -> we cannot train the conv layers for this problem
 - Rol (Region of Interest) Pooling

Rol Pooling

- Step 1: Get bounding box for feature map from bounding box for image
 - Due the (down)convolution / pooling operations, feature map would have a smaller size than the original image

Feature map

Rol Pooling

- Step 2: Divide cropped feature map into fixed number of sub-regions
 - The last column and last row might be smaller

https://arxiv.org/pdf/1504.08083.pdf

Rol Pooling

• Step 3: For each sub-region, perform max pooling (pick the max one)

Fast R-CNN (Girshick et al. ICCV 2015)

What could be the problems?

Fast R-CNN (Girshick et al. ICCV 2015)

- What could be the problems?
 - Why we need the region proposal pre-processing step? That's not "deep learning" at all. Not cool!

- Solution
 - Why not generate region proposals using CNN??! -> RPN

RPN: Region Proposal Network

RPN: Anchor Box

RPN: Anchor Box

Anchor box: predictions are w.r.t. this box, not the 3x3 sliding window

3x3 "sliding window" -

- Objectness classifier
- Box regressor predicting (dx, dy, dh, dw)

RPN: Prediction (off object)

Objectness score

Anchor box: transformed by

box regressor

- Objectness classifier
- Box regressor predicting (dx, dy, dh, dw)

https://arxiv.org/pdf/1506.01497.pdf

RPN: Multiple Anchors

Anchor boxes: K anchors per location with different scales and aspect ratios

- Solution
 - Why not generate region proposals using CNN??!

What could be the problems

- What could be the problems
 - Two-stage detection pipeline is still too slow to apply on real-time videos

Solution

- Don't generate object proposals!
- Consider a tiny subset of the output space by design; directly classify this small set of boxes

Solution

Go from input image to tensor of scores with one big convolutional network!

Input image 3 x H x W

Redmon et al, "You Only Look Once: Unified, Real-Time Object Detection", CVPR 2016 Liu et al, "SSD: Single-Shot MultiBox Detector", ECCV 2016

Divide image into grid 7 x 7

Image a set of **base boxes** centered at each grid cell Here B = 3

Within each grid cell:

- Regress from each of the B base boxes to a final box with 5 numbers: (dx, dy, dh, dw, confidence)
- Predict scores for each of C classes (including background as a class)

Output: 7 x 7 x (5 * B + C)

What could be the problems?

- What could be the problems?
 - The extreme foreground-background class imbalance -> we have a lot more negative examples.

- What could be the problems?
 - The extreme foreground-background class imbalance -> we have a lot more negative examples.
 - Even though they have small loss values, the gradients overwhelm the model

Focal Loss for Dense Object Detection (Lin et al. ICCV 2017)

Solution

 For easy examples, we down-weight it loss, so that the gradients from these example have smaller impact to the model

https://arxiv.org/pdf/1708.02002.pdf

Speed/Accuracy Tradeoff

COCO Object Detection Average Precision (%)

Past Early (best circa 2015 2012)

COCO Object Detection Average Precision (%)

Mistakes are often reasonable

Bicycle: AP = 0.73

Confident Mistakes

Mistakes are often reasonable

Confident Mistakes

horse (loc): ov=0.46 1-r=0.89

horse (sim): ov=0.00 1-r=0.50

R-CNN results

Influential Works in Detection

- Sung-Poggio (1994, 1998): ~2100 citations
 - Basic idea of statistical template detection (I think), bootstrapping to get "face-like" negative examples, multiple whole-face prototypes (in 1994)
- Rowley-Baluja-Kanade (1996-1998) : ~4200
 - "Parts" at fixed position, non-maxima suppression, simple cascade, rotation, pretty good accuracy, fast
- Schneiderman-Kanade (1998-2000,2004) : ~2250
 - Careful feature/classifier engineering, excellent results, cascade
- Viola-Jones (2001, 2004) : ~20,000
 - Haar-like features, Adaboost as feature selection, hyper-cascade, very fast, easy to implement
- Dalal-Triggs (2005): ~11000
 - Careful feature engineering, excellent results, HOG feature, online code
- Felzenszwalb-Huttenlocher (2000): ~1600
 - Efficient way to solve part-based detectors
- Felzenszwalb-McAllester-Ramanan (2008,2010)? ~4000
 - Excellent template/parts-based blend

Influential Works in Detection

Fails in commercial face detection

Who's in These Photos?

The photos you uploaded were grouped automatically so you can quickly label and notify friends i these pictures. (Friends can always untag themselves.)

Who is this?

Who is this?

http://www.oddee.com/item 98248.aspx

Summary: statistical templates

Propose Window

Classify

Postprocess

Sliding window: scan image pyramid

Fast randomized features

Region proposals: edge/region-based, resize to fixed window

CNN features

SVM

Boosted stubs

Neural network

Non-max suppression

Segment or refine localization

Next class

Image Segmentation

https://people.eecs.berkeley.edu/~jonlong/long_shelhamer_fcn.pdf