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Hard-margin SVM formulatior
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Support Vector Machine

ACost function
ALarge margin classification
AKernels

AUsing an SVM



Nonlinear classification

AHow do we separate the two classes using a hyperplane?
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Nonlinear classification
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Kernel

A (ih) a legal definition of inner product:
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Why Kernels matter?

AMany algorithms interact with data only vidot-products
AReplacan awith U (6d)  %€0) %o

AActimplicitly as if data was in the high&limensionabée
space



Example
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Slide credit: MarigFlorinaBalcan



Example kernels
ALinear kernel ]
L(W)
AGaussian (Radial basis function) kernel
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Constructing new kernels
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Nonlinear decision boundary
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Slide credit: Andrew Ng



Kernel

W Givewy compute new features dependlng on
A & Cg( proximity to landmarkst ,a ,d
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Choosing the landmarks
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SVM with kernels
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SVM with kernels

AHypothesis: Givety compute features o
APredictty p E/AQ

ATraining (original)
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Support vector machines (Primal/Dual)

APrimal form

ALagrangiamual
form




SVM [Lagrangiamalual)
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SVM parameters

A ( —)
Largeo: Lower bias, high variance.
Smallo dHigherbias,low variance.

A,

ALarge, dfeatures’Qvary more smoothly.

AHigher bias, lower variance

ASmall, dfeaturesQvarylesssmoothly.
ALower bias, higher variance

Slide credit: Andrew Ng



SVM Demo

Ahttps://cs.stanford.edu/people/karpathy/svmijs/demo/



https://cs.stanford.edu/people/karpathy/svmjs/demo/

SVM song

Ahttps://www.youtube.com/watch?v=g15bqtyidZs

Video source:



Support Vector Machine

ACost function
ALarge margin classification
AKernels

AUsing an SVM



Using SVM
ASVM software package (e.fblinear libsvm to solve for—

ANeed to specify:
A Choice of parameted.
A Choice of kernel (similarity function):

ALinear kernelPredicty p E A& ® T
AGaussiarkernel:
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Slide credit: Andrew Ng



Kernel (similarity) functions

ANote: not all similarity functions make valid kernels.

AMany oftthe-shelf kernels available:
APolynomial kernel
AString kernel
AChisquare kernel
AHistogram intersection kernel

Slide credit: Andrew Ng



Multi-class classification
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AUse onevs-all method. Trainh SVMs, one to distinguish  “(Grom
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Slide credit: Andrew Ng



Logistic regression vs. SVMs

A&  number of featuresdn ¢ , 0 number of training examples

1. If= is large (relative tal): £ p o mht
01 386 f23AAAGAO NBANBAAAZY 2NJ { +:
2. If= issmall,Od isintermediate ¢ p pmMmWIT pmT p MMM
O Use SVM with Gaussian kernel

3. If=issmallD islarge ¢ p pmhmnT vV IMMTTM
O Create/add more features, then use logistic regression of linear S\

Neural network likely to work well for most of these case,
but slower to train Slide credit: Andrew Ng



Things to remember
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Neural Networks

AWhy neural networks?
AModel representation
AExamples and intuitions

AMulti-class classification



Neural Networks

AWhy neural networks?
AModel representation
AExamples and intuitions

AMulti-class classification



Nonlinearclassification
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Slide credit: Andrew Ng



What humans see

Slide credit: Larritnick



What computers see
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Slide credit: Larritnick



Computer Vision: Car detection

Slide credit: Andrew Ng
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%_IQ\ . Learning
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50x50 pixel images> 2500 pixels
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Neural Networks

AQrigins: Algorithms that try to mimic the brain.

AWasvery widely used in 80s and early 9pspularity
diminishedin late 90s

ARecent resurgence: Statd-the-art technique formany
applications

Slide credit: Andrew Ng



An Al Timeline

Birth of Al Focus on Specific ‘Intelligence’ Focus on Specific Problems
@ * Information Theory — digital signals @ * Expert Systems (knowledge) @ * Machine learning
* Cybernetics — thinking machines * Neural networks make a comeback *» Deep learning — pattern analysis / classification
* The Turing Test * Optical character recognition - Big data: large databases
« Symbolic reasoning * Speech recognition - Fast processors to crunch data
- High-speed networks
1950 1960 1970 1980 1990 | 2000 2010 2020
* Limited computer processing power * Disappointing results
* Limited database capacity * Collapse of dedicated hardware vendors

* Limited networking capabilities

* Real-world problems are complicated
- Image processing / face recognition
- Combinatorial explosion

Al Winter Al Winter |l

https://www.slideshare.net/dlavenda/aand-productivity



Auditory Cortex

]

Auditory cortex learns to see

[Roe et al. 1992] Slide credit: Andrew Ng



[Metin and Frost 1989]
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Somatosensory cortex learns to see

Slide credit: Andrew Ng



Sensor representations In the brain

¢

L
Haptic belt: Direction sense Implanting a 3" eye
[BrainPort; Welsh & Blasch, 1997; Nagel et al., 2005; Constantine-Paton & Law, 2009] Slide credit: Andrew Ng



Neural Networks

AWhy neural networks?
AModel representation
AExamples and intuitions

AMulti-class classification



A single neuron In the brain
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Slide credit: Andrew Ng



