

Reducing Footskate in Human Motion Reconstruction with Ground Contact Constraints

Adobe®

Yuliang Zou¹

Human Motion Reconstruction

Input: Monocular Video

Character animation

Applications

Virtual reality

Problem: Footskate

- serious jittering (HMR [Kanazawa et al. 2017])
- artifacts remain

Jimei Yang²

Duygu Ceylan² ¹ Virginia Tech

Output: 3D pose/shape estimation

Core Idea

• Toes or heals in contact with ground \rightarrow zero velocity

Imitation learning

- Per-frame estimation causes Temporal smoothing reduces jittering (SFV [Peng et al. 2018]) Foot slippage (footskate)

Model: Temporal Convolutional Network

Zero-Velocity Constraint

• Joint in two consecutive frames are in contact with the ground \rightarrow zero velocity $\hat{y}_k^{t-1} \hat{y}_k^t \parallel$ $L_{zv} =$ $t=2 \ k \in S_{foot}$

Ground contact prediction

Jianming Zhang² Federico Perazzi² Jia-Bin Huang¹ ² Adobe Research

Reducing Footskate with Ground Contact Constraints

- not in contact

Step 1: Ground Contact Prediction Main reculte

Iviain results							
	Left Toe	Left Heel	Right Toe	Right Heel	mean AP		
Keypoint (w/o training)	0.9418	0.8314	0.9437	0.7876	0.8761		
Flow (w/o training)	0.9169	0.8003	0.9426	0.7881	0.8620		
Flow	0.9670	0.8559	0.9422	0.8284	0.8984		
Keypoint	0.9755	0.8960	0.9662	0.8789	0.9292		
Keypoint + Detection score	0.9686	0.8783	0.9588	0.8762	0.9205		
Keypoint + Flow	0.9725	0.8846	0.9634	0.8700	0.9226		

Step 2: Motion Reconstruction

$$\left. x_k^{t-1} - x_k^t \right\|_2^2$$

Global coordinates

Two-Stage Optimization

- First stage: HMR + temporal smoothing (SFV) to get a good initialization Second stage: Jointly
- optimizing zero-velocity and temporal consistency
- Why? Direct optimization causes conflicts

Code available at: http://bit.ly/fs reducer

Design choice validation

lepro	ojectio	n loss		
		Optim Optim	ize L _{SFV} ize L _{over}	only all
100 1	teratio	200 n	250	300
Sł	nape lo	SS		
		Optim Optim	ize L _{SFV} ize L _{overc}	only all
100	150	200	250	300

Result Improvement

Temporal window size

	HMR	SFV	Ours
WalkDog	75.05	72.68	72.26
Walking	64.82	66.63	65.61
WalkTogether	73.29	72.21	71.27
Average	71.05	70.42	69.63