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Unsupervised domain adaptation
Input: A source dataset (labeled) and a target dataset (unlabeled)

Challenges
- Target domain is unsupervised
- Domain gap between the source and target datasets

or pixel-level [1, 36, 7, 14] adaptation techniques to mini-
mize the domain gap between the source and target datasets.
However, aligning marginal distributions does not necessar-
ily lead to satisfactory performance as there is no explicit
constraint imposed on the predictions in the target domain
(as no labeled training examples are available). While sev-
eral methods have been proposed to alleviate this issue via
curriculum learning [34, 6] or self-paced learning [53], the
problem remains challenging since these methods may only
learn from cases where the current models perform well.

Our work. In this paper, we present CrDoCo, a pixel-
level adversarial domain adaptation algorithm for dense
prediction tasks. Our model consists of two main mod-
ules: 1) an image-to-image translation network and 2) two
domain-specific task networks (one for source and the other
for target). The image translation network learns to translate
images from one domain to another such that the translated
images have a similar distribution to those in the translated
domain. The domain-specific task network takes images of
source/target domain as inputs to perform dense prediction
tasks. As illustrated in Figure 2, our core idea is that while
the original and the translated images in two different do-
mains may have different styles, their predictions from the
respective domain-specific task network should be exactly
the same. We enforce this constraint using a cross-domain

consistency loss that provides additional supervisory signals
for facilitating the network training, allowing our model to
produce consistent predictions. We show the applicability
of our approach to multiple different tasks in the unsuper-
vised domain adaptation setting.

Our contributions. First, we present an adversarial
learning approach for unsupervised domain adaptation
which is applicable to a wide range of dense predic-
tion tasks. Second, we propose a cross-domain consis-
tency loss that provides additional supervisory signals for
network training, resulting in more accurate and consis-
tent task predictions. Third, extensive experimental re-
sults demonstrate that our method achieves the state-of-
the-art performance against existing unsupervised domain
adaptation techniques. Our source code is available at
https://yunchunchen.github.io/CrDoCo/

2. Related Work
Unsupervised domain adaptation. Unsupervised do-
main adaptation methods can be categorized into two
groups: 1) feature-level adaptation and 2) pixel-level adap-
tation. Feature-level adaptation methods aim at aligning
the feature distributions between the source and target do-
mains through measuring the correlation distance [39], min-
imizing the maximum mean discrepancy [26], or apply-
ing adversarial learning strategies [44, 42] in the feature
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Figure 2: Main idea. While images may have different
appearances/styles in different domains, their task predic-
tions (e.g., semantic segmentation as shown in this exam-
ple) should be exactly the same. Our core idea in this paper
is to impose a cross-domain consistency loss between the
two task predictions.

space. In the context of image classification, several meth-
ods [10, 11, 26, 27, 43, 44] have been developed to address
the domain-shift issue. For semantic segmentation tasks,
existing methods often align the distributions of the fea-
ture activations at multiple levels [15, 17, 42]. Recent ad-
vances include applying class-wise adversarial learning [4]
or leveraging self-paced learning policy [53] for adapting
synthetic-to-real or cross-city adaptation [4], adopting cur-
riculum learning for synthetic-to-real foggy scene adapta-
tion [34], or progressively adapting models from daytime
scene to nighttime [6]. Another line of research focuses on
pixel-level adaptation [1, 36, 7]. These methods address the
domain gap problem by performing data augmentation in
the target domain via image-to-image translation [1, 36] or
style transfer [7] methods.

Most recently, a number of methods tackle joint feature-
level and pixel-level adaptation in image classification [14],
semantic segmentation [14], and single-view depth predic-
tion [48] tasks. These methods [14, 48] utilize image-
to-image translation networks (e.g., the CycleGAN [51])
to translate images from source domain to target domain
with pixel-level adaptation. The translated images are then
passed to the task network followed by a feature-level align-
ment.

While both feature-level and pixel-level adaptation have
been explored, aligning the marginal distributions without
enforcing explicit constraints on target predictions would
not necessarily lead to satisfactory performance. Our model
builds upon existing techniques for feature-level and pixel-
level adaptation [14, 48]. The key difference lies in our
cross-domain consistency loss that explicitly penalizes in-
consistent predictions by the task networks.

Cycle consistency. Cycle consistency constraints have
been successfully applied to various problems. In image-
to-image translation, enforcing cycle consistency allows the
network to learn the mappings without paired data [51, 22].

Cross-domain consistency
- Images of different styles should have the same task predictions

Our approach
Training

Testing

Experimental results

Cross-domain consistency loss ℒ"#$%&%

B) Cross-city adaptation

A) Synthetic-to-real adaptation
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Figure 1: Applications of the proposed method. Our method has the applications ranging from semantic segmentation (top
row), depth prediction (middle row), to optical flow estimation (bottom row).

Abstract

Unsupervised domain adaptation algorithms aim to

transfer the knowledge learned from one domain to another

(e.g., synthetic to real images). The adapted representa-

tions often do not capture pixel-level domain shifts that are

crucial for dense prediction tasks (e.g., semantic segmenta-

tion). In this paper, we present a novel pixel-wise adversar-

ial domain adaptation algorithm. By leveraging image-to-

image translation methods for data augmentation, our key

insight is that while the translated images between domains

may differ in styles, their predictions for the task should be

consistent. We exploit this property and introduce a cross-

domain consistency loss that enforces our adapted model to

produce consistent predictions. Through extensive experi-

mental results, we show that our method compares favor-

ably against the state-of-the-art on a wide variety of unsu-

pervised domain adaptation tasks.

1. Introduction

Deep convolutional neural networks (CNNs) are ex-
tremely data hungry. However, for many dense predic-
tion tasks (e.g., semantic segmentation, optical flow esti-
mation, and depth prediction), collecting large-scale and di-
verse datasets with pixel-level annotations is difficult since
the labeling process is often expensive and labor intensive
(see Figure 1). Developing algorithms that can transfer the
knowledge learned from one labeled dataset (i.e., source
domain) to another unlabeled dataset (i.e., target domain)
thus becomes increasingly important. Nevertheless, due to
the domain-shift problem (i.e., the domain gap between the
source and target datasets), the learned models often fail to
generalize well to new datasets.

To address these issues, several unsupervised domain
adaptation methods have been proposed to align data dis-
tributions between the source and target domains. Existing
methods either apply feature-level [39, 26, 44, 42, 15, 14]

http://bit.ly/CrDoCo
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Method
MPI Sintel! KITTI 2012 MPI Sintel! KITTI 2015

AEPE AEPE F1-Noc AEPE F1-all F1-all
train test test train train test

FlowNet2 [Ilg CVPR 17] 4.09 - - 10.06 30.37% -
PWC-Net [Sun CVPR 18] 4.14 4.22 8.10% 10.35 33.67% -
Ours w/o Lconsis 4.16 4.92 13.52% 10.76 34.01% 36.43%
Ours 2.19 3.16 8.57% 8.02 23.14% 25.83%

Method
GTA5! Cityscapes SYNTHIA! Cityscapes

mean IoU Pixel acc. mean IoU Pixel acc.

Synth. 22.9 71.9 18.5 54.6
DR [Tobin IROS 17] 25.5 73.8 19.2 57.9
DS [Dundar arXiv 18] 38.3 87.2 29.5 76.5
UNIT [Liu NeurIPS 17] 39.1 87.1 28.0 70.8
FCNs ITW [Hoffman arXiv 17] 27.1 - 17.0 -
CyCADA [Hoffman ICML 18] 39.5 82.3 - -
Ours w/o Lconsis 39.4 85.8 29.8 75.3
Ours 45.1 89.2 33.4 79.5

Method
Cityscapes! Cross-city

Rome Rio Tokyo Taipei

Cross-City [Chen ICCV 17] 42.9 42.5 42.8 39.6
CBST [Zou ECCV 18] 53.6 52.2 48.8 50.3
AdaptSegNet [Tsai CVPR 18] 52.2 49.5 46.9 47.5
Ours w/o Lconsis 51.0 48.9 45.9 46.8
Ours 55.1 50.4 51.2 47.9

Method
SUNCG! NYU-v2

Abs. Rel. # Sq. Rel. # RMSE #

Synth. 0.304 0.394 1.024
Baseline (train set mean) 0.439 0.641 1.148
T2Net [Zheng ECCV 18] 0.257 0.281 0.915
Ours w/o Lconsis 0.254 0.283 0.911
Ours 0.233 0.272 0.898
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Input images Ground truth Ours w/o Lconsis Ours
Figure 6: Visual results of depth prediction. We present the depth prediction results with and without applying the cross-
domain consistency loss.
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C) Visual results
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Frame 1 Ground truth Ours Ours

Figure 1: Visual results of optical flow estimation. We present the optical flow estimation results of our method.
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