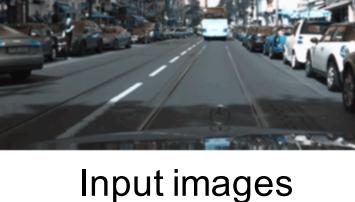



### **Unsupervised domain adaptation**






# **CrDoCo:** Pixel-level Domain Transfer with Cross-Domain Consistency

Yun-Chun Chen<sup>1,2</sup> Yen-Yu Lin<sup>1</sup> <sup>1</sup>Academia Sinica <sup>2</sup>National Taiwan University

### Our approach





Ground truth

Ours w/o  $\mathcal{L}_{consis}$ 

### Ming-Hsuan Yang<sup>3,4</sup> Jia-Bin Huang<sup>5</sup> <sup>3</sup>UC Merced <sup>4</sup>Google <sup>5</sup>Virginia Tech



Ours

| Method                                | GTA5  ightarrow Cityscapes |             | SYNTHIA  ightarrow Cityscapes |             | Method                             | $igsquiring$ SUNCG $ ightarrow$ NYU ${f v}$ 2 |           |                  |
|---------------------------------------|----------------------------|-------------|-------------------------------|-------------|------------------------------------|-----------------------------------------------|-----------|------------------|
|                                       | mean IoU                   | Pixel acc.  | mean IoU                      | Pixel acc.  | Methou                             | Abs. Rel. ↓                                   | Sq. Rel.↓ | $RMSE\downarrow$ |
| Synth.                                | 22.9                       | 71.9        | 18.5                          | 54.6        |                                    | · · ·                                         |           |                  |
| DS [Dundar arXiv 18]                  | 38.3                       | <u>87.2</u> | 29.5                          | <u>76.5</u> | Synth.                             | 0.304                                         | 0.394     | 1.024            |
| UNIT [Liu NeurIPS 17]                 | 39.1                       | 87.1        | 28.0                          | 70.8        | Baseline (train set mean)          | 0.439                                         | 0.641     | 1.148            |
| FCNs ITW [Hoffman arXiv 17]           | 27.1                       | -           | 17.0                          | -           | T <sup>2</sup> Net [Zheng ECCV 18] | 0.257                                         | 0.281     | 0.915            |
| CyCADA [Hoffman ICML 18]              | 39.5                       | 82.3        | -                             | -           | -                                  | 0.254                                         | 0.283     |                  |
| Ours w/o $\mathcal{L}_{	ext{consis}}$ | 39.4                       | 85.8        | <u>29.8</u>                   | 75.3        | Ours w/o $\mathcal{L}_{consis}$    |                                               |           | <u>0.911</u>     |
| Ours                                  | 45.1                       | 89.2        | 33.4                          | 79.5        | Ours                               | 0.233                                         | 0.272     | 0.898            |

|                                          | MPI Si | $	t intel 	o 	extsf{l}$ | KITTI 2012    | MPI Sintel $ ightarrow$ KITTI 2015 |                |                |  |  |
|------------------------------------------|--------|-------------------------|---------------|------------------------------------|----------------|----------------|--|--|
| Method                                   | AEPE   | AEPE                    | F1-Noc        | AEPE                               | F1-all         | F1-all         |  |  |
|                                          | train  | test                    | test          | train                              | train          | test           |  |  |
| FlowNet2 [Ilg CVPR 17]                   | 4.09   | -                       | -             | 10.06                              | <u>30.37</u> % | -              |  |  |
| PWC-Net [Sun CVPR 18]                    | 4.14   | 4.22                    | 8.10%         | 10.35                              | 33.67%         | -              |  |  |
| Ours w/o $\mathcal{L}_{\mathrm{consis}}$ | 4.16   | 4.92                    | 13.52%        | 10.76                              | 34.01%         | <u>36.43</u> % |  |  |
| Ours                                     | 2.19   | 3.16                    | <u>8.57</u> % | 8.02                               | 23.14%         | 25.83%         |  |  |

Input images

Ground truth

Ours w/o  $\mathcal{L}_{consis}$ 

Ours



## http://bit.ly/CrDoCo

### **Experimental results**

| Method                                   | $	extsf{Cityscapes} 	o 	extsf{Cross-city}$ |             |       |             |  |  |  |
|------------------------------------------|--------------------------------------------|-------------|-------|-------------|--|--|--|
| Wethod                                   | Rome                                       | Rio         | Tokyo | Taipei      |  |  |  |
| Cross-City [Chen ICCV 17]                | 42.9                                       | 42.5        | 42.8  | 39.6        |  |  |  |
| CBST [Zou ECCV 18]                       | <u>53.6</u>                                | 52.2        | 48.8  | 50.3        |  |  |  |
| AdaptSegNet [Tsai CVPR 18]               | 52.2                                       | 49.5        | 46.9  | 47.5        |  |  |  |
| Ours w/o $\mathcal{L}_{\mathrm{consis}}$ | 51.0                                       | 48.9        | 45.9  | 46.8        |  |  |  |
| Ours                                     | 55.1                                       | <u>50.4</u> | 51.2  | <u>47.9</u> |  |  |  |