


Overview

- Find the approximated sparse solution of the linear system Original problem y = Ax**min** $\|\mathbf{x}\|_1$ subject to $\|\widetilde{\mathbf{y}} - \mathbf{F}\mathbf{x}\|_2$ Original sparse coding problem: find a sparse solution from a Dictionary learning from the K-SVD algorithm *dense* matrix K $\min_{\mathsf{D},\mathsf{W}} \|\mathsf{F} - \mathsf{D}\mathsf{W}\|_F^2 = \sum \sum \|\mathsf{f}_{i,j} - \mathsf{W}\|_F^2$ subject to ||**w_{i,i}**|' Approximation process $\widetilde{\mathbf{y}} \approx \mathbf{D}\mathbf{W}_{\widetilde{\mathbf{v}}} \approx \mathbf{D}\mathbf{W}\mathbf{x}.$ $Dw_{\widetilde{y}} + e_{\widetilde{y}} = DWx + e_Fx \Longrightarrow D(w_{\widetilde{y}} - Wx)$ $\|\mathsf{D}(\mathsf{w}_{\widetilde{\mathsf{y}}}-\mathsf{W}\mathsf{x})\|_{2} \leq (s+1)\epsilon.$ $\|\mathbf{Z}\|_{2} = \|\mathbf{W}_{\widetilde{\mathbf{y}}} - \mathbf{W}\mathbf{X}\|_{2} \leq \frac{(s+1)\epsilon}{\sqrt{(1-\rho)}}$ Transformed sparse coding problem: find a sparse solution • Reduced $\ell_1 - norm$ minimization problem from a *sparse* matrix $\min_{\mathbf{x}} \|\mathbf{x}\|_{1} \quad \text{subject to} \quad \|\mathbf{w}_{\widetilde{\mathbf{v}}} - \mathbf{W}\mathbf{x}\|_{2} \leq \widetilde{\epsilon}.$ **Experimental Results**

Applications

- Sparsity-based classification/clustering
- Image restoration (e.g., denoising, inpainting, demosaicking, super-resolution)
- Compressive sensing

Contributions

- Exploit the fact that signals can be well represented by a sparse linear combination of atom signals
- Reduce the original dense and large problem to a sparse ar *small* problem

Fast Sparse Representation with Prototypes Jia-Bin Huang and Ming-Hsuan Yang Electrical Engineering and Computer Science, University of California, Merced jbhuang@ieee.org, mhyang@ieee.org

Algorithm

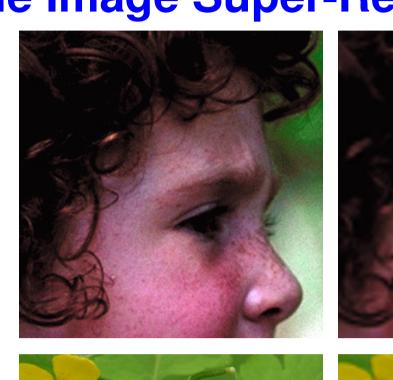
Face Recognition

Figure: Sample images from the extended Yale database B

Table: Recognition accuracy and speed using the Extended Yale database B

Feature	Downsa	mpled image	PCA		
Method	Acc (%)	Time (s)	Acc (%)	Time (s)	
Original	93.78	20.08	95.01	13.17	
Proposed	91.62	0.51	92.28	0.32	
Speed-up		39.4	41.2		

Multi-view Object Recognition


Table: Comparison on recognition speed and accuracy on the COIL-100

Number of view	8		16			8		16		
	Recognition accuracy				Execution time					
Feature used	Orig. (%)	Ours (%)	Orig. (%)	Ours (%)	Orig. (s)	Ours (ms)	Speed-up	Orig. (s)	Ours (ms)	Speed-up
Downsample	82.43	80.93	90.01	87.43	6.85	3.2	2140.6	52.73	3.9	13520.5
Downsample	75.08	74.28	84.75	84.00	4.13	3.9	1059.0	48.02	5.2	9234.6
PCA: 256	84.56	82.08	91.03	89.22	3.71	3.3	1124.2	29.58	3.8	7784.2
PCA: 100	81.23	79.23	90.58	87.72	2.54	3.6	705.6	21.00	5.6	3750.0
	Feature used Downsample Downsample PCA: 256	Feature usedOrig. (%)Downsample82.43Downsample75.08PCA: 25684.56	Feature usedOrig. (%)Ours (%)Downsample82.4380.93Downsample75.0874.28PCA: 25684.5682.08	Recognition Accuracy Feature used Orig. (%) Ours (%) Orig. (%) Downsample 82.43 80.93 90.01 Downsample 75.08 74.28 84.75 PCA: 256 84.56 82.08 91.03	Recognition accuracy Feature used Orig. (%) Ours (%) Orig. (%) Ours (%) Downsample 82.43 80.93 90.01 87.43 Downsample 75.08 74.28 84.75 84.00 PCA: 256 84.56 82.08 91.03 89.22	Recognition accuracy Accuracy Feature used Orig. (%) Ours (%) Orig. (%) Ours (%) Ours (%) Orig. (%) Orig. (s) Downsample 82.43 80.93 90.01 87.43 6.85 Downsample 75.08 74.28 84.75 84.00 4.13 PCA: 256 84.56 82.08 91.03 89.22 3.71	Recognition accuracy Orig. (%) Ours (%) Orig. (%) Ours (%) Ours (%) Ours (%) Orig. (s) Ours (ms) Downsample 82.43 80.93 90.01 87.43 6.85 3.2 Downsample 75.08 74.28 84.75 84.00 4.13 3.9 PCA: 256 84.56 82.08 91.03 89.22 3.71 3.3	Recognition accuracy Executi Feature used Orig. (%) Ours (%) Orig. (%) Ours (%) Ours (%) Orig. (s) Ours (ms) Speed-up Downsample 82.43 80.93 90.01 87.43 6.85 3.2 2140.6 Downsample 75.08 74.28 84.75 84.00 4.13 3.9 1059.0 PCA: 256 84.56 82.08 91.03 89.22 3.71 3.3 1124.2	Recognition accuracy Execution time Feature used Orig. (%) Ours (%) Ours (%) Ours (%) Orig. (s) Ours (ms) Speed-up Orig. (s) Downsample 82.43 80.93 90.01 87.43 6.85 3.2 2140.6 52.73 Downsample 75.08 74.28 84.75 84.00 4.13 3.9 1059.0 48.02 PCA: 256 84.56 82.08 91.03 89.22 3.71 3.3 1124.2 29.58	Recognition accuracy Execution time Feature used Orig. (%) Ours (%) Orig. (%) Ours (%) Orig. (%) Ours (%) Orig. (%) Orig. (%) Ours (%)

Experimental Results Single Image Super-Resolution


$2 \leq \epsilon$.	(1)
$\mathbf{Dw}_{i,j} \parallel_2^2$	
0 ≤ S ₀ ,	(2)
\mathbf{x}) = $\mathbf{e}_{F}\mathbf{x} - \mathbf{e}_{\widetilde{y}}$.	 (3) (4) (5) (6)
$\ 2 \leq \widetilde{\epsilon}.$	(7)

Ground-truth

Image	Original		Prop		
Method	RMSE	Time (s)	RMSE	Time (s)	Speedup
Girl	5.6684	17.2333	6.2837	1.5564	11.07
Flower	3.3649	14.9173	3.8710	1.3230	11.27
Pathenon	12.247	35.1163	13.469	3.1485	11.15
Raccoon	9.3584	27.9819	10.148	2.3284	12.02

Human Pose Estimation

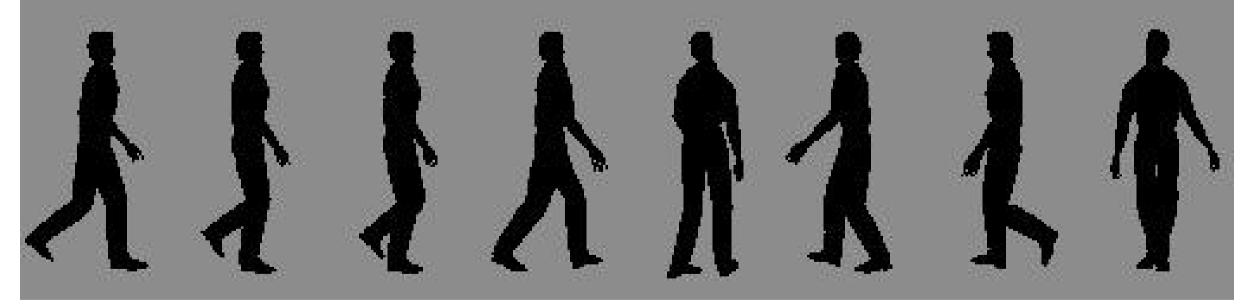


Table: Comparison on pose estimation accuracy and speed under different number of prototypes using the INRIA data set

Number of coefficients	3	6	9	12	15	Original
Mean error (in degrees)	9.1348	7.9970	7.4406	7.2965	7.1872	6.6513
Execution time (in seconds)	0.0082	0.0734	0.3663	1.1020	2.3336	24.69
Speed-up	3011.0	336.4	67.4	22.4	10.6	

Figure: Sample images from the INRIA data set