iCAN: Instance-Centric Attention Network for Human-Object Interaction Detection

Chen Gao Yuliang Zou Jia-Bin Huang Virginia Tech

Code available at https://bit.ly/iCAN_BMVC18

Human-Object Interaction Detection

Person, cut obj, cake Person, cut instr, knife

Person, hold,

knife

Qualitative results on V-COCO

eat carro

sit on chair

eat sandwich

sit on horse

ride bike

eat donut

eat pizza

Input image

, smile **HOI** detection Object detection What is where? rightarrow What is happening?

Instance-centric Attention Network

sit on elephant sit on couch

eat hot dog

lay on couch lay on bench

lay on bed **Qualitative results on HICO-DET**

hold motorcycle

feed elephant

sit on boat

straddle motor.

row boat

hose elephant

pet elephant

drink w/ bottle

- Detecting objects with Faster R-CNN
- Predicting action scores with object/human/pairwise streams
- Fusing score to produce final predictions

Instance-centric Attention Module

Core idea: Appearance of an instance provides informative cues on where in the image we should pay attention to

catch sports ball

throw sports ball

kick sports ball

hit sports ball

Detecting multiple actions

work on laptop read book

sit on couch

hold spoon

sit on chair

Quantitative results on V-COCO

Method	Feature backbone	<i>AP_{role}</i>
Model C of [Gupta et al. 2015]	ResNet-50-FPN	31.8
InteractNet [Gkioxari et al. 2018]	ResNet-50-FPN	40.0
BAR-CNN [Kolesnikov et al. 2018]	Inception-ResNet	41.1
iCAN (ours) w/ late fusion	ResNet-50	<u>44.7</u>
iCAN (ours) w/ early fusion	ResNet-50	45.3

- Generating attention map conditioned on instance appearance Quantitative results on HICO-DET
- Measuring the similarity in embedding space
- Using instance-centric attentional feature to complement the
 - instance appearance feature
- **Attention map visualization**

talk on cellphone

Object-centric att. Human-centric att.

		Default		Known Object			
Method	Feature backbone	Full	Rare	Non Rare	Full	Rare	Non Rare
Zero-shot [Shen et al. 2018]	VGG-19	6.46	4.24	7.12	-	-)-
HO-RCNN [Chao et al. 2017]	CaffeNet	7.81	5.37	8.54	10.41	8.94	10.85
InteractNet [Gkioxari et al. 2018]	ResNet-50-FPN	<u>9.94</u>	7.16	<u>10.77</u>	-	s 	-
iCAN (ours)	ResNet-50	14.84	10.45	16.15	16.26	11.33	17.73

Ablation study: mAP vs. time/model size

