Exploiting Self-Similarities for Single Frame Super-Resolution
Chih-Yuan Yang, Jia-Bin Huang, Ming-Hsuan Yang
Electrical Engineering and Computer Science, University of California, Merced
cyang35@ucmerced.edu, jbhuang@ieee.org, mhyang@ucmerced.edu
code available: http://eng.ucmerced.edu/people/cyang35

Problem
• Single Frame Super-Resolution
 - Reconstruct high-resolution images from low-resolution one

• Super-Resolution Methods and Their Drawbacks
 - Interpolation-based
 - usually result in over-smoothed edges
 - Reconstruction-based
 - require multiple low-resolution image observations
 - Example-based
 - require external dataset to learn low-high resolution patch mapping

Main Idea
• Patch Similarity in Images
 - Combining reconstruction-based and example-based method by exploiting self-similarities in natural images

• Group Structural Sparsity
 - Learning the mapping from low-resolution to high-resolution patches with non-local sparse model (i.e. exploiting structural sparsity)

Algorithm
• Generate Example Pairs by Exploiting Self-Similarity
 - Image pyramid construction
 - For each patch, find k-nearest neighbor patches
 - Generate training low/high resolution patch pairs

• Learning Dictionary with Group Sparsity
 - Cluster training pairs
 - For each cluster, solve the group sparse coefficients as
 \[
 \min_{A} \| A \|_{1,2} \text{ s.t. } Y_{i} = DA_{i} \leq \sqrt{n_{i}} \delta
 \]
 where \(\| A \|_{1,2} = \sum_{k=1}^{n_{k}} \| R_{k} \|_{2} \) and \(R_{k} \) is \(A \)’s \(k \)-th row
 - Dictionary update using the K-SVD algorithm
 \[
 D = \text{argmin}_{D} \| Y - DA \|_{F} \text{ s.t. } \| D_{j} \|_{2} = 1 \forall j
 \]

• Reconstruct High-Resolution Images
 - Cluster low-resolution patches
 - For each cluster, solve group sparse coefficients
 - Reconstruct high-resolution patches using the learned dictionary

Experimental Results
• Experiments Setup
 - Image pyramid level \(n = 6 \)
 - Number of nearest neighbor \(m = 9 \)
 - Scaling factor \(s = 3 \)
 - Apply only on luminance channel
 - Solving group sparsity: SPGL1 package

 (a) Original (b) Yang et al. (c) Glasner et al. (d) Proposed

 (a) Bicubic (b) Yang et al. (c) Proposed

Conclusion
• A super-resolution algorithm by exploiting self-similarities in the forms of example generation and dictionary learning with group sparsity