
3D Photography using Context-aware Layered Depth Inpainting
Supplementary Material

Meng-Li Shih12

shihsml@gapp.nthu.edu.tw

Shih-Yang Su1

shihyang@vt.edu

Johannes Kopf3

jkopf@fb.com

Jia-Bin Huang1

jbhuang@vt.edu

1Virginia Tech 2National Tsing Hua University 3Facebook
https://shihmengli.github.io/3D-Photo-Inpainting

In this supplementary material, we present additional visual results and implementation details to complement the main
paper [9].

Table 1. Quantitative comparison on the RealEstate10K dataset.

Methods SSIM ↑ PSNR ↑ LPIPS ↓

Stereo-Mag [13] 0.8906 26.71 0.0826
PB-MPI [11] (32 Layers) 0.8717 25.38 0.0925
PB-MPI [11] (64 Layers) 0.8773 25.51 0.0902
PB-MPI [11] (128 Layers) 0.8700 24.95 0.1030
LLFF [5] 0.8062 23.17 0.1323
Xview [1] 0.8628 24.75 0.0822
Ours 0.8887 27.29 0.0724

1. Additional Quantitative Results
We further evaluate the PB-MPI method [11] with various number of depth layers. We report the results in Table 1.

2. Visual Results

Comparisons with the state-of-the-arts. We provide a collection of rendered 3D photos with comparisons with the state-
of-the-art novel view synthesis algorithms. In addition, we show that our method can synthesize novel view for legacy photos.
Please refer to the website1 for viewing the results.
Ablation studies. To showcase how each of our proposed component contribute to the quality of the synthesized view, we
include a set of rendered 3D photos using the same ablation settings in Section 4.4 of the main paper. Please refer to the
website1 for viewing the photos.

3. Implementation Details
In this section, we provide additional implementation details of our model, including model architectures, training objec-

tives, and training dataset collection. We will release the source code to facilitate future research in this area.

Model architectures. We adopt the same U-Net [8] architecture as in [4] for our depth inpainting and color inpainting
models (see Table 2), and change the input channels for each model accordingly. For the edge inpainting model, we use
a design similar to [7] (see Table 3). We set the input depth and RGB values in the synthesis region to zeros for all three
models. The input edge values in the synthesis region are similarly set to zeros for depth and color inpainting models, but
remain intact for the edge inpainting network. We show the input details of each model in Table 4

1https://shihmengli.github.io/3D-Photo-Inpainting/

1

https://shihmengli.github.io/3D-Photo-Inpainting
https://shihmengli.github.io/3D-Photo-Inpainting/

Table 2. Model architecture of our color and depth inpainting models. W denote partial convolution layer as PConv, and denote
BatchNorm as BN. We add the context and synthesis region together as the partial masks for the PConv layers.

Module Filter Size #Channels Dilation Stride Norm Nonlinearity

PConv1 7×7 64 1 2 - ReLU
PConv2 5×5 128 1 2 BN ReLU
PConv3 5×5 256 1 2 BN ReLU
PConv4 3×3 512 1 2 BN ReLU
PConv5 3×3 512 1 2 BN ReLU
PConv6 3×3 512 1 2 BN ReLU
PConv7 3×3 512 1 2 BN ReLU
PConv8 3×3 512 1 2 BN ReLU

NearestUpsample - 512 - 2 - -
Concatenate (w/ PConv7) - 512+512 - - - -

PConv9 3×3 512 1 1 BN LeakyReLU(0.2)

NearestUpsample - 512 - 2 - -
Concatenate (w/ PConv6) - 512+512 - - - -

PConv10 3×3 512 1 1 BN LeakyReLU(0.2)

NearestUpsample - 512 - 2 - -
Concatenate (w/ PConv5) - 512+512 1 - - -

PConv11 3×3 512 1 1 BN LeakyReLU(0.2)

NearestUpsample - 512 - 2 - -
Concatenate (w/ PConv4) - 512+512 - - - -

PConv12 3×3 512 1 1 BN LeakyReLU(0.2)

NearestUpsample - 512 - 2 - -
Concatenate (w/ PConv3) - 512+256 - - - -

PConv13 3×3 256 1 1 BN LeakyReLU(0.2)

NearestUpsample - 256 - 2 - -
Concatenate (w/ PConv2) - 256+128 - - - -

PConv14 3×3 128 1 1 BN LeakyReLU(0.2)

NearestUpsample - 128 - 2 - -
Concatenate (w/ PConv1) - 128+64 - - - -

PConv15 3×3 64 1 1 BN LeakyReLU(0.2)

NearestUpsample - 64 - 2 - -
Concatenate (w/ Input) - 64 + 4 or 64 + 6 (Depth / Color Inpainting) - - - -

PConv16 3×3 1 or 3 (Depth / Color Inpainting) 1 1 - -

Training objective. To train our color inpainting model, we adopt similar objective functions as in [4]. First, we define
the reconstruction loss for context and synthesis regions:

Lsynthesis =
1
N
||S� (I− Igt)||, Lcontext =

1
N
||C� (I− Igt)||, (1)

where S and C are the binary mask indicating synthesis and context regions, respectively, � denotes the Hadamard product,
N is the total number of pixels, I is the inpainted result, and Igt is the ground truth image.

Next, we define the perceptual loss [2]:

Lperceptual =
P−1

∑
p

||ψp(I)−ψp(Igt)||
Nψp

, (2)

Here, ψp(·) is the output of the pth layer from VGG-16 [10], and Nψp is the total number of elements in ψp(·).

Table 3. Model architecture of our edge inpainting models. As in [7], the edge inpainting model consists of 1 edge generator, and 1
discriminator network. SN→IN indicates that we first perform spectral normalization (SN) [6], and then apply instance normalization
(IN) [12]. ResnetBlock comprises 2 conv layers with the specified hyper-parameters and a skip connection between the input and the
output of the block.

Edge Generator
Module Filter Size #Channels Dilation Stride Norm Nonlinearity

Conv1 7×7 64 1 1 SN→IN ReLU
Conv2 4×4 128 1 2 SN→IN ReLU
Conv3 4×4 256 1 2 SN→IN ReLU

ResnetBlock4 3×3 256 2 1 SN→IN ReLU
ResnetBlock5 3×3 256 2 1 SN→IN ReLU
ResnetBlock6 3×3 256 2 1 SN→IN ReLU
ResnetBlock7 3×3 256 2 1 SN→IN ReLU
ResnetBlock8 3×3 256 2 1 SN→IN ReLU
ResnetBlock9 3×3 256 2 1 SN→IN ReLU

ResnetBlock10 3×3 256 2 1 SN→IN ReLU
ResnetBlock11 3×3 256 2 1 SN→IN ReLU

ConvTranspose12 4×4 128 1 2 SN→IN ReLU
ConvTranspose13 4×4 64 1 2 SN→IN ReLU

Conv14 7×7 1 1 1 SN→IN Sigmoid

Discriminator
Module Filter Size #Channels Dilation Stride Norm Nonlinearity

Conv1 4×4 64 1 2 SN LeakyReLU(0.2)
Conv2 4×4 128 1 2 SN LeakyReLU(0.2)
Conv3 4×4 256 1 2 SN LeakyReLU(0.2)
Conv4 4×4 512 1 1 SN LeakyReLU(0.2)
Conv5 4×4 1 1 1 SN Sigmoid

Table 4. Input of each model in our proposed method. The check mark X indicates that it is used as input for the model.

RGB Depth Edge Context& Synthesis

Color Inpainting X - X X
Depth Inpainting - X X X
Edge Inpainting X X X X

We define the style loss as:

Lstyle =
P−1

∑
p

1
CpCp

|| 1
CpHpWp

[
(ψ I

p)
>

ψ
I
p− (ψ

Igt
p)>ψ

Igt
p

]
||, (3)

where Cp, Hp, Wp is the number of channels, height, and width of the output ψp(·).
Finally, we adopt the Total Variation (TV) loss:

Ltv = ∑
(i, j)∈S,(i, j+1)∈S

||I(i, j+1)− I(i, j)||
N

+ ∑
(i, j)∈S,(i+1, j)∈S

||I(i+1, j)− I(i, j)||
N

. (4)

Here, We overload the notation S to denote the synthesis region. This term can be interpreted as a smoothing penalty on
the synthesis area. Combine all these loss terms, we obtain the training objective for our color inpainting model:

L = Lcontext +6Lsynthesis +0.05Lperceptual +120Lstyle +0.01Ltv

For our depth inpainting model, we use only Lcontext +Lsynthesis as the objective functions. For edge inpainting model, we
follow the identical training protocol as in [7].

Figure 1. Dataset generation process. We first form a collection of context/synthesis regions by extracting them from the linked depth
edges in images on the COCO dataset. We then randomly sample and paste these regions onto different images, forming our training
dataset for context-aware color and depth inpainting.

StereoMag [13] PB-MPI [11] Ours
Figure 2. Failure cases. Single-image depth estimation algorithms (e.g., MegaDepth) often have difficulty in handling thin and complex
structures and may produce overly smooth depth maps.

Training details. We illustrate the data generation process in Figure 1. We use the depth map predicted by MegaDepth [3]
as our pseudo ground truth. We train our method using 1 Nvidia V100 GPU with batch size of 8, and the total training time
take about 5 days.

4. Failure cases
As estimating depth/disparity map from a single image remain a challenging problem (particularly for scenes with com-

plex, thin structures), our method fails to produce satisfactory results with plausible motion parallax for scenes with complex
structures. Due to the use of explicit depth map, our method is unable to handle reflective/transparent surfaces well. We show
in Figure 2 two examples of such cases. Here, we show the input RGB image as well as the estimated depth map from the

pre-trained MegaDepth model. The rendered 3D photos can be found in the supplementary webpage.

References
[1] Inchang Choi, Orazio Gallo, Alejandro Troccoli, Min H Kim, and Jan Kautz. Extreme view synthesis. In ICCV, 2019. 1
[2] Justin Johnson, Alexandre Alahi, and Li Fei-Fei. Perceptual losses for real-time style transfer and super-resolution. In ECCV, 2016.

2
[3] Zhengqi Li and Noah Snavely. Megadepth: Learning single-view depth prediction from internet photos. In CVPR, 2018. 4
[4] Guilin Liu, Fitsum A Reda, Kevin J Shih, Ting-Chun Wang, Andrew Tao, and Bryan Catanzaro. Image inpainting for irregular holes

using partial convolutions. In ECCV, 2018. 1, 2
[5] Ben Mildenhall, Pratul P. Srinivasan, Rodrigo Ortiz-Cayon, Nima Khademi Kalantari, Ravi Ramamoorthi, Ren Ng, and Abhishek

Kar. Local light field fusion: Practical view synthesis with prescriptive sampling guidelines. ACM Transactions on Graphics (TOG),
38(4), July 2019. 1

[6] Takeru Miyato, Toshiki Kataoka, Masanori Koyama, and Yuichi Yoshida. Spectral normalization for generative adversarial networks.
2018. 3

[7] Kamyar Nazeri, Eric Ng, Tony Joseph, Faisal Qureshi, and Mehran Ebrahimi. Edgeconnect: Generative image inpainting with
adversarial edge learning. arXiv preprint, 2019. 1, 3

[8] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convolutional networks for biomedical image segmentation. In
MICCAI, 2015. 1

[9] Meng-Li Shih, Shih-Yang Su, Johannes Kopf, and Jia-Bin Huang. 3d photography using context-aware layered depth inpainting. In
CVPR, 2020. 1

[10] Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale image recognition. arXiv preprint
arXiv:1409.1556, 2014. 2

[11] Pratul P Srinivasan, Richard Tucker, Jonathan T Barron, Ravi Ramamoorthi, Ren Ng, and Noah Snavely. Pushing the boundaries of
view extrapolation with multiplane images. In CVPR, 2019. 1, 4

[12] Dmitry Ulyanov, Andrea Vedaldi, and Victor Lempitsky. Instance normalization: The missing ingredient for fast stylization. arXiv
preprint arXiv:1607.08022, 2016. 3

[13] Tinghui Zhou, Richard Tucker, John Flynn, Graham Fyffe, and Noah Snavely. Stereo magnification: Learning view synthesis using
multiplane images. ACM Transactions on Graphics, 2018. 1, 4

