Predicting User Annoyance Using Visual Attributes

Gordon Christie¹ Amar Parkash² Ujwal Krothapalli¹ Devi Parikh¹

¹Virginia Tech ²Goibibo

Problem
• Computer vision algorithms make mistakes
• In human-centric applications, some mistakes are more annoying to users than others
• Where does this cost matrix come from?

Modeling User Annoyance
Notation
• Mistake: if an image from category i is classified to be category j (classification), or if an image from category i is considered to be similar to an image from category j (retrieval)
• We predict the cost (annoyance) of a mistake (c_{ij}) between an image from category i and another from category j
• $2M$-dimensional feature vector (d_{ij}) for each category pair
• Attribute memberships: M-dimensional feature vector $a^m_i = \{0, 1\}$ to indicate that attribute m is present in category i

Features
• Concatenate differences and similarities of attribute scores
 $d_{ij} = [d_{ij}^m \ d_{ij}^{\neg m}]$
 $d_{ij}^m = a^m_i \oplus a^m_j$
 $d_{ij}^{\neg m} = a^m_i \land a^m_j$

Experimental Setup
Data Collection
• Collect ground truth annoyance on Amazon Mechanical Turk (Range 1 - "Not annoyed at all" to 5 - "Very annoyed")

Evaluation – Annoyance Prediction
• Evaluate the regressor and ranker, which involves predicting a cost matrix for the current test categories
• Mean Squared Error (MSE) for the regressor
• Spearman Rank correlation coefficient for the ranker

Evaluation – Image Search
• Find the true mean and min annoyance of top R retrieved results from the ranker over multiple runs

Results
Datasets
• Pubfig (faces)
 • 8523 images from 60 categories
 • Use a vocabulary of 63 out of 73 attributes
• SUN (scenes)
 • 1600 images from 80 categories used
 • Use 62 out of 102 attributes from Patterson and Hays

Annoyance Prediction
• We are able to predict annoyance more accurately than baselines (our approach = [], baselines = [])

Image Search
• Our approach makes less annoying mistakes in an image retrieval application

Conclusions
• Modeling differences and similarities in attribute-based representations allows us to predict annoyance of previously unseen mistakes more effectively than several baselines.
• Our approach allows for an improved user experience for image search.