Exam 2 Review
Office Hours:
Thursday 1pm - 3pm

\[V_0 = \frac{8\pi}{58\pi} \text{ V} \]

\[I = \frac{1V}{58\pi} \]

\[P = V_0 I = \frac{8\pi}{(58\pi)^2} \text{ W} \]

Velleman Function generator
\[I = \frac{1V - V_+}{50\Omega} = 0mA \]

\[I = \frac{1V}{8n} = 0.125A \]

\[P = V_0 \cdot I = 0.125W \]
dB (decibel)

$dB = 10 \log P$

$V_+ = V_-$
\[G_1 = -\frac{R_2}{R_1} \]

\[G_2 = -\frac{R_4}{R_3} \]
G of original circuit = \(G_1 \cdot G_2 \)

\[
G = \frac{V_0}{V_{in}} = \frac{V_0'}{V_{in}} \cdot \frac{V_0}{V_0'} = \frac{R_4 R_2}{R_3 R_1}
\]

\[
G_{\text{noninverting}} = \left(1 + \frac{R_F}{R_1} \right)
\]
Superposition

- Turn on and off sources
 DV source \rightarrow short circuit
 OA source \rightarrow open circuit
Thevenin and Norton Equivalent Circuits

a. Source transformation

\[
V_i \quad \Rightarrow \quad \frac{V_i}{R_1} + R_1
\]
b. Req of circuit w/o \(R_L \)

\[V \]

\[R_1 \]

\[R_2 \]

\[R_L \]

Turn off all sources

\[R_1 \]

\[R_2 \] \(\approx \) \(R_{eq} = R_1 || R_2 = R_{th} \)

Then calculate \(V_{oc} \) (Thevenin circuit) \(I_{sc} \) (Norton circuit)
C. Calculate (or measure)

\[V_{oc} = V_{Th} \quad \text{and} \quad I_{sc} = I_{n} \]

\[R_{Th} = \frac{V_{oc}}{I_{sc}} \]

\[V_{oc} = \frac{R_2}{R_2 + R_1} V_1 \]

\[I_{sc} = \frac{V_1}{R_1} \]

\[R_{Th} = \frac{V_{oc}}{I_{sc}} = \frac{R_1 R_2}{R_2 + R_1} = R_1 || R_2 \]
\[I_W = \frac{V_1}{R_1} \]
Max Power Transfer

max power transferred to R_L occurs when $R_L = R_{Th}$

$\text{max power transferred to } R_L \text{ occurs when } R_L = R_{Th}$
Op Amps (Ideal)
- no current flows into the input terminals of op amp
- $V_o = V_-$
 enough current will be supplied at the output terminal to allow this

Non-ideal work this way as long as $V^- \leq V_o \leq V^+$
\[i = \frac{3V - 3V}{R_1} = 0 \text{mA} \]

\[u_+ - u_- = 0 \text{V} \]
\[i = 0 \text{mA} \]

\[V_A = 2V \]
\[V_B = 5V \]
\[i = \frac{3V}{R_1} = \frac{V_B - V_A}{R_1} \]