RC and RL Circuits

1st Order Circuits
Objective of the Lecture

- Explain the transient response of a RC circuit
 - As the capacitor stores energy when there is:
 - a transition in a unit step function source, $u(t-t_o)$
 - or a voltage or current source is switched into the circuit.

- Explain the transient response of a RL circuit
 - As the inductor stores energy when there is:
 - a transition in a unit step function source, $u(t-t_o)$
 - or a voltage or current source is switched into the circuit.

Also known as a forced response to an independent source
RC Circuit

$I_C = 0A$ when $t < t_0$

$V_C = 0V$ when $t < t_0$

Because $I_1 = 0A$ (replace it with an open circuit).
RC Circuit

- Find the final condition of the voltage across the capacitor.
 - Replace C with an open circuit and determine the voltage across the terminal.

\[I_C = 0A \text{ when } t \sim \infty \text{ s} \]
\[V_C = V_R = I_1R \text{ when } t \sim \infty \text{ s} \]
RC Circuit

In the time between t_0 and $t = \infty$ s, the capacitor stores energy and currents flow through R and C.

\[
V_C = V_R
\]

\[
I_C = C \frac{dV_C}{dt}
\]

\[
I_R = \frac{V_R}{R}
\]

\[
I_R + I_C - I_1 = 0
\]

\[
\frac{V_C}{R} + C \frac{dV_C}{dt} - I_1 = 0
\]

\[
V_C(t) = RI_1 \left[1 - e^{-\frac{t-t_0}{\tau}}\right] \quad \tau = RC
\]
RL Circuit (con’t)

- Initial condition is not important as the magnitude of the voltage source in the circuit is equal to 0V when \(t \leq t_0 \).
 - Since the voltage source has only been turned on at \(t = t_0 \), the circuit at \(t \leq t_0 \) is as shown below.
 - As the inductor has not stored any energy because no power source has been connected to the circuit as of yet, all voltages and currents are equal to zero.
RL Circuit

- So, the final condition of the inductor current needs to be calculated after the voltage source has switched on.
- Replace L with a short circuit and calculate $I_L(\infty)$.
Final Condition

\[V_L(\infty) = 0V \]
\[I_L(\infty) = I_R \]
\[I_R = \frac{V_1}{R} \]
RL Circuit

\[\frac{dI_L}{dt} + RI_R - V_1 = 0 \]

\[\frac{dI_L}{dt} + \frac{R}{L} I_L - \frac{V_1}{L} = 0 \]

\[I_L(t) = \frac{V_1}{R} \left[1 - e^{-(t-t_0)/\tau} \right] \]

\[\tau = \frac{L}{R} \]

\[-V_1 + V_L + V_R = 0 \]

\[I_L = I_R = \frac{V_R}{R} \]

\[V_L = L \frac{dI_L}{dt} \]
Electronic Response

- Typically, we say that the currents and voltages in a circuit have reached steady-state once \(5\tau \) have passed after a change has been made to the value of a current or voltage source in the circuit.
 - In a circuit with a forced response, percentage-wise how close is the value of the voltage across a capacitor in an RC circuit to its final value at \(5\tau \)?
Complete Response

- Is equal to the natural response of the circuit plus the forced response
 - Use superposition to determine the final equations for voltage across components and the currents flowing through them.
Example #1

- Suppose there were two unit step function sources in the circuit.
Example #1 (con’t)

- The solution for V_c would be the result of superposition where:
 - $I_2 = 0A$, I_1 is left on
 - The solution is a forced response since I_1 turns on at $t = t_1$
 - $I_1 = 0A$, I_2 is left on
 - The solution is a natural response since I_2 turns off at $t = t_2$
Example #1 (con’t)

\[V_C(t) = 0V \quad \text{when } t < t_1 \]

\[V_C(t) = RI_1 \left[1 - e^{-\frac{(t-t_1)}{RC}} \right] \quad \text{when } t > t_1 \]
Example #1 (con’t)

\[V_C(t) = -RI_2 \quad \text{when } t < t_2 \]

\[V_C(t) = -RI_2 e^{\frac{(t-t_2)}{RC}} \quad \text{when } t > t_2 \]
Example #1 (con’t)

- If $t_1 < t_2$

$$V_C(t) = 0V - RI_2$$

when $t < t_1$

$$V_C(t) = RI_1 \left[1 - e^{-\frac{(t-t_1)}{RC}} \right] - RI_2$$

when $t_1 < t < t_2$

$$V_C(t) = RI_1 \left[1 - e^{-\frac{(t-t_1)}{RC}} \right] - RI_2 e^{-\frac{(t-t_2)}{RC}}$$

when $t > t_2$
General Equations

When a voltage or current source changes its magnitude at \(t = 0 \) s in a simple RC or RL circuit.

Equations for a simple RC circuit

\[
V_C(t) = V_C(\infty) + \left[V_C(0) - V_C(\infty) \right] e^{-t/\tau}
\]

\[
I_C(t) = \frac{C}{\tau} \left[V_C(\infty) - V_C(0) \right] e^{-t/\tau}
\]

\(\tau = RC \)

Equations for a simple RL circuit

\[
I_L(t) = I_L(\infty) + \left[I_L(0) - I_L(\infty) \right] e^{-t/\tau}
\]

\[
V_L(t) = \frac{L}{\tau} \left[I_L(\infty) - I_L(0) \right] e^{-t/\tau}
\]

\(\tau = L / R \)
MATLAB

Needed to Complete HW # 21
How to renew your MatLAB license

http://swat.eng.vt.edu/Matlabtutorial.html

If you would like to contact them directly, SWAT is located at:
2080 Torgersen Hall
Office Hours: 12:00pm to 4:00pm Monday - Friday
Phone: (540) 231-7815
E-mail: swat@vt.edu
Introductory Tutorials

- MathWorks (www.mathworks.com) has
 - On-line tutorials including A Very Elementary MATLAB Tutorial
 - Videos (look at the ones below Getting Started)
 - Worked examples (further down the demos page)
- Textbook has a MatLAB tutorial in Appendix E.
Summary

- The final condition for:
 - the capacitor voltage \(V_o \) is determined by replacing the capacitor with an open circuit and then calculating the voltage across the terminals.
 - The inductor current \(I_o \) is determined by replacing the inductor with a short circuit and then calculating the current flowing through the short.

- The time constant for:
 - an RC circuit is \(\tau = RC \) and an RL circuit is \(\tau = L/R \)

- The general equations for the forced response of:
 - the voltage across a capacitor is \(V_C(t) = V_o \left[1 - e^{-(t-t_o)/\tau} \right] \) when \(t > t_o \)
 - the current through an inductor is \(I_L(t) = I_o \left[1 - e^{-(t-t_o)/\tau} \right] \) when \(t > t_o \)
Summary

- General equations when the magnitude of a voltage or current source in the circuit changes at $t = 0s$ for the:
 - voltage across a capacitor is $V_C(t) = V_C(\infty) + [V_C(0) - V_C(\infty)]e^{-t/\tau}$
 - current through an inductor is $I_L(t) = I_L(\infty) + [I_L(0) - I_L(\infty)]e^{-t/\tau}$

- Superposition should be used if there are multiple voltage and/or current sources that change the magnitude of their output as a function of time.