Phase Delays

Lagging and Leading
Calculation of Phase

• Suppose you have three signals that you have measured with your oscilloscope
 – One signal is your reference
 • I have chosen the reference to be the signal in Blue on the following slide
 – The phase of the other two signals will be calculated with respect to the reference signal.
 • The period of each signal should be the same, which means that all signals have the same frequency.
Steps

• Calculate the period, T, for the reference signal
 – This is the time for a full cycle to be completed.
 • $T = 500$ seconds for Signal 1
 – Calculate the difference in time between zero crossings of
 • Signal 2 and Signal 1: $\Delta t = 40$ seconds $- 0$ seconds
 • Signal 3 and Signal 1: $\Delta t = 480$ seconds $- 0$ seconds
Steps

• The sinusoidal function that describes Signal 1, the reference voltage, is
 \[V(t) = 5V \sin (\omega t) \] where \(\omega = 1/T = 0.002 \text{ s}^{-1} \)

• To write the sinusoidal function that describes Signals 2 and 2, we need to address the fact that there is a shift in the zero crossings
 \[V(t) = A \sin (\omega t + \phi) \] where \(\omega = 1/T \) and \(\phi = -2\pi \Delta t/T \)
 • \(\phi \) is called the phase shift
Lagging and Leading

• Don’t get fooled by the positions of the curves on the graph!

• Signal 2: $V(t) = 5V \sin \left((0.002 \text{ s}^{-1})t - 0.502\right)$
 – ϕ is 0.5 radians or 28.8 degrees
 – Signal 2 lags Signal 1 as it reaches 0V at a later time than Signal 1

• Signal 3: $V(t) = 5V \sin \left((0.002 \text{ s}^{-1})t + 0.251\right)$
 – ϕ is 0.251 radians or 14.4 degrees
 – Signal 3 leads Signal 1 as it reaches 0V at an earlier time than Signal 1