
ECE 45234 - Spring 2018 Problem Set #0 Due: 1/30/18

The purpose of this first problem set is to remind you of the material you need from 2574
and help get you up-to-speed with python. This course uses these concepts from the first
few lectures through the end of the semester, so it is important that you understand this
material.

You can complete the exercises by either directly marking up this pdf, or by printing,
completing, and scanning as a pdf. You should complete the Engineering Design Problems
by writing the python code as instructed. The resulting pdf and python files should be
uploaded to Canvas via the assignment tab by the due date and time.

Exercises

1. Determine the stack (LIFO queue) contents at the points indicated below during the
following operations on a C++ stack. Write down the stack contents after the operation
on the given line is executed. Be sure to indicate the top of the stack.

1. stack<int> s;

2. s.push(-1);

3. s.push(2);

4. s.push(-4);

5. s.push(200);

6. s.pop();

7. s.pop()

8. s.pop();

(a) (2 points) After line 2:

(b) (2 points) After line 5:

(c) (2 points) After line 8:



ECE 45234 - Spring 2018 Problem Set #0 Page 2 of 6

2. Determine the FIFO queue contents at the points indicated below during the following
operations on a C++ queue. Write down the queue contents after the operation on the
given line is executed. Be sure to indicate the front of the queue.

1. queue<int> q;

2. q.push(-1);

3. q.push(2);

4. q.push(-4);

5. q.push(200);

6. q.pop();

7. q.pop()

8. q.pop();

(a) (2 points) After line 2:

(b) (2 points) After line 5:

(c) (2 points) After line 8:



ECE 45234 - Spring 2018 Problem Set #0 Page 3 of 6

3. Consider an array of values as follows. Rearrange them to form a (min) heap. Draw as
both an array and as a tree.

{ 8, 12, -5, 32, -5, -7, 9, 84, -7, 5, 120 }

(a) (3 points) As an array:

(b) (3 points) As a tree:

4. (6 points) What is the average asymptotic complexity in big-O notation of the following
data structures implementing a Dictionary ADT?

Operation Hash Table Balanced Binary Search Tree
insert

remove

search



ECE 45234 - Spring 2018 Problem Set #0 Page 4 of 6

5. Consider the following binary tree

A

B

C D

E F

and assume children are expanded in left-right order. What order are the nodes visited
in a

(a) (3 points) Preorder Traversal:

(b) (3 points) Inorder Traversal:

(c) (3 points) Postorder Traversal:

6. (5 points) Suppose I have an algorithm that uses a dictionary implemented as a Hash
Table containing N items. The algorithm first searches for a given key/value pair and,
if found, removes the pair, changes the value, and reinserts the new key/value. What is
the average asymptotic complexity in big-O notation of this algorithm ?



ECE 45234 - Spring 2018 Problem Set #0 Page 5 of 6

Engineering Design Problems

To complete the engineering design problems, you will need to download the starter code
in the ps0.zip file from the website.

7. (16 points) Implement a Python class called Deque in a file called deque.py that imple-
ments the following double-ended queue API:

Deque

class Deque

| A Deque class implementation.

|

| Methods defined here:

|

| __init__(self)

| Construct a Deque (initially empty)

|

| back(self)

| return the back of the Deque

|

| empty(self)

| return True is the Deque is empty, else False.

|

| front(self)

| return the front of the Deque

|

| pop_back(self)

| pop a value from the back of the Deque

|

| pop_front(self)

| pop a value from the front of the Deque

|

| push_back(self, value)

| push a value onto the back of the Deque

|

| push_front(self, value)

| push a value onto the front of the Deque

Your implementation should pass the unit tests defined in test deque.py. Submit only
the deque.py file to Canvas.



ECE 45234 - Spring 2018 Problem Set #0 Page 6 of 6

8. (6 points) Consider a binary tree in Python represented as an adjacency list using a
dictionary of tuples. For example the tree in exercise 5 could be written as

tree = {’A’:(’B’,None), ’B’:(’C’, ’D’), ’C’: (None, None),

’D’:(’E’, ’F’), ’E’:(None,None), ’F’:(None, None)}

Write the python functions preorder(tree, root), inorder(tree, root), and postorder(tree,
root), defined in the file tree.py, to return a list of the tree nodes from the indicated
traversal, starting at the subtree root.. Your implementation should pass the basic unit
tests defined in test tree.py. Submit only the tree.py file to Canvas.


