
ECE 3574: Applied Software Design

Producer/Consumer Pattern



Today we are going to see how to use a design pattern
that works well for concurrency as well as discuss Qt’s
threading implementation.

I Producer/Consumer Pattern
I C++11 producer/consumer using a thread-safe queue
I Reusing threads: thread pools
I Async function calls using QtConcurrent::Run
I QFuture
I QThread
I Qt-based producer/consumer



The producer/consumer pattern divides code into two
largely independent pieces.

The producer which does the work of creating a product and
putting it into a thread-safe data structure.

The consumer removes the product from the data structure and
does something with it.

Note, all synchronization happens in the data structure.



C++11 producer/consumer using a thread-safe queue

Lets reuse the thread-safe queue from last time to implement an
example.

See cpp11_prodcon.cpp.



Producer/Consumer is more efficient that async calls
because it reuses threads.

How long does it take to create and join a thread?

See threads_per_sec.cpp. On my laptop

100000 threads in 1.50751 seconds.
66334.6 threads per second.
0.0150751 milliseconds per thread.

That seems fast, but compare that to just calling the
thread_function.

It is over 1000 times slower even with no optimization.



Threads can be reused by creating a thread pool

A thread pool is a collection of running threads that can do a
variety of work without starting/stopping threads each time.

Lets look at a potential implementation.

See cpp11_threadpool_ex1.cpp.

What issues are there with this design?

How might it be improved?



Qt Thread support
Qt has a threading library that is pretty standard, except for how it
integrates with the event and signal/slot system:

I std::async and std::future become QtConcurrent::run
and QFuture

I std::thread becomes QtThread
I std::mutex become QMutex

However:

I it uses a thread pool,which manages and recycles QThread
objects

I threads can have there own event loop running
I you can use the signal/slot mechanism to send/receive signals

between threads, which provides a thread-safe queued message
passing system, and the ability to monitor and control thread
execution (pause, resume, cancel).



Using QtConcurrent to run a function in another thread.

This is very similar to C++11 std::async usage.

See qt_concurrent_ex1.cpp, qt_concurrent_ex2.cpp, and
qt_concurrent_ex3.cpp.



There are two ways to use QThread.

1. Subclass QThread and re-implement run. The constructor runs
in the old thread while start/run executes in the new thread.
Unless you call exec in the thread yourself there is no event
loop. Emits signals when started, terminated, or finished.

See qthread_ex1.cpp.

2. Create a QThread object and move an object to it. Calling
start starts a Qt event loop in the thread to which the object
responds.

See qthread_ex2.cpp



QThread and signal/slots

You can monitor QThreads by connecting to the signals

I started - emitted when thread starts executing
I finished - emitted when thread is done executing (run returns)
I terminated - emitted when thread is terminated

You can manually managing threads by connecting signals to the
slots

I start - start the thread event loop
I terminate - terminate the thread next time it is scheduled by

OS (generally a bad idea)
I quit - tell the event loop to exit



Qt-based producer/consumer

Producer/Consumer is easy in Qt since QtConcurrent::run()
uses a thread pool.

See qt_concurrent_ex3.cpp.



Next Actions and Reminders

I Read about the actor model


