ECE 3574: Applied Software Design

Thread Safe Queue



Today we are going to look in detail at how to make a
data structure thread-safe.

Review of std::queue
push

empty

try_pop
wait_and_pop
Message Queues
Exercise

vV VVYy VvV VvVYVvYyy



Review std: :queue

A first-in-first-out queue with (basic) methods

» push

> pop
> empty



Like all standard containers, std: :queue is not thread-safe

» Q: How can we adapt the queue to protect access?
» A: mutexes and condition variables

We protect each method with a mutex.



The interface

template<typename T>
class ThreadSafeQueue

{

public:

void push(const T & value);

bool empty() const;

bool try_pop(T& popped_value);

void wait_and_pop(T& popped_value);
private:

std: :queue<T> the_queue;

mutable std::mutex the_mutex;
std::condition_variable the_condition_variable;

};



Simplest case: empty member function

template<typename T>

bool ThreadSafeQueue<T>::empty() const {
std: :lock_guard<std::mutex> lock(the_mutex);
return the_queue.empty(Q) ;



push member function

template<typename T>

void ThreadSafeQueue<T>::push(const T& value) {
std: :unique_lock<std::mutex> lock(the_mutex) ;
the_queue.push(value) ;
lock.unlock();
the_condition_variable.notify_one();



try_pop member function

No waiting, returns true on success, popped value as an output
argument.

template<typename T>
bool ThreadSafeQueue<T>::try_pop(T &popped_value) {
std: :lock_guard<std::mutex> lock(the_mutex);
if (the_queue.empty()) {
return false;

}

popped_value = the_queue.front();
the_queue.pop();
return true;



wait_and_pop member function

Wait for available, returns popped value as an output argument.

template<typename T>
void ThreadSafeQueue<T>::wait_and_pop(T &popped_value) {
std::unique_lock<std::mutex> lock(the_mutex) ;
while (the_queue.empty()) {
the _condition_variable.wait (lock);

}

popped_value = the_queue.front();
the_queue.pop() ;
}



Thread-safe queues are a good way to implement message
passing between threads, where they are called Message

Queues.

» Each thread has a pointer or reference to a shared input
ThreadSafeQueue holding units of work

» Each thread has a pointer or reference to a shared output
ThreadSafeQueue holding results of work

» Each thread calls wait_and_pop on input queue, does the
work, then calls push on the output queue

Often a single thread, the Producer, pushes into the input queue
and pops from the output queue. The other threads act as Workers

or Consumers.



Exercise

See the website.



Next Actions and Reminders

» Read about Producer/Consumer Pattern



