ECE 3574: Applied Software Design

Threads

Today we are going to start looking at threads, multiple
executing programs within the same process that share the
code segment and heap, but have separate stacks.

Threads and OS scheduling
C++11 Threads

C++11 std: :async
Examples

vVVvyYyysy

Threads

A thread is a single executing sequence, consisting of memory (code
segment, stack, heap) and state (program counter, registers).

A process has one or more threads, that share the code segment and
heap, but have separate stacks, and state.

A typical memory layout of a process with two threads

| code |

D S thread 2's stack

stack 1 |[<———""——- thread 1's stack

Process versus Threads

Threads get scheduled by the OS
On most OS's there is no real distinction between threads and
processes in the kernel scheduler (e.g. both are tasks).

» From the schedulers perspective a process is just a single
thread.

» From the virtual memory manger's perspective the address
space layout is different.

This means creation and context switches are faster for threads.
Heap memory is also shared by default, so no
shm__create/size/map/unmap/close required!

C+-+11 Threads

All programming languages define details relative to an abstract
machine.

Prior to C++11 threading was platform specific (e.g. posix-threads
versus win-threads), the abstract machine was single-threaded.

In C++11 this abstraction was extended to include a memory model
that allows the specification to say what a compiler can and cannot
do relative to memory.

» Atomics were added
» And a standard thread library was added

We will use it to explore multithreading, then talk about other
threading implementations (pthreads and QThread) later.

Creating a thread

#include <thread>
class thread;

Creates thread objects, each represents a single (unique) thread of
execution.

» cannot copy construct a thread
» cannot copy assign a thread
> you can move construct and move assign a thread

Each thread has a unique id within the process:
std::this_thread::get_id()

A thread object has an associated function where
execution begins

» This is like “main” for the thread. In fact main is the entry
point for thread 0.

» The function can take arguments which are passed to the
thread constructor.

» Constructing a thread object starts the thread.

After starting a thread you must wait for it to complete
before the main thread exits.

To wait in a thread to finish (by exiting the thread entry function)
you call the join method.
See hello_threadl.cpp and hello_thread2.cpp.

Threads share the heap.

Each thread shares the heap, giving them implicit shared memory.
We will see how to coordinate this in the next few meetings.

For now, lets see how to use threads as asynchronous functions,
using higher-level concepts than the heap.

Promises and Futures

Conceptually a thread has an input channel and and output channel.
#include <future>

» The input channel is represented by a promise:
std: :promise<T>

» The output channel is represented by a future:
std: :future<T>

Both are objects that have a shared state (empty, ready, invalid),
synchronized automatically by the C++ library.

Example: returning a value from a thread.

We can pass arguments to the thread when we create it. How do we
return a value from the thread?

We use a promise/future together.

See example: promise_future.cpp (example from Bartosz
Milewski)

What about exceptions thrown in a thread?

If not caught in the thread, the program terminates.

But, we can return exceptions in the future, which gets re-thrown
automatically by the get call.

See example: thread_exceptions.cpp.

Promises/Futures are nice, but there is a lot of boilerplate
in the code.

The function std: :async allows us to just return values from the
thread function like from any function, and does the thread
creation/join for us!

See example: async_future.cpp

Thread local storage

Recall the three standard storage specifiers in C++.

» automatic: exists in block/function scope
» static (global): exists during the entire program
» dynamic: exists between new/delete calls

C++11 adds one more: thread_local meaning it exists during

thread execution.
This is like a global for each thread, so has limited uses.

How many threads can | run?

You can get a hint to how many threads can run in parallel using
std: :thread: :hardware_concurrency().

See how_many . cpp.

Note it can sometimes be advantageous to run more threads than
the hardware supports, in particular if the task is |/O bound.
However, as we will see there is a point of diminishing returns.

Example: asynchronous search version 1

Lets implement a concurrent binary search.
See concurrent_binary_search.cpp.
Why isn’t this faster?

Example: asynchronous search version 2

Lets use a slower (linear) search.
See concurrent_linear_search.cpp.
Still not faster?

Example: Concurrent Merge-sort

See serial_mergesort.cpp and concurrent_mergesort.cpp.
Note: too many threads is bad for performance.

More is not always better.

Concurrent performance often requires adapting based on problem

size.

Next Actions and Reminders

» Read about Locking and Semaphores

