
ECE 3574: Applied Software Design

Introduction to Concurrency: Processes and Threads

Today we are going to introduce the notion of concurrency.

I Concurrency
I Engineering View: Operating Systems and Concurrency
I CS Theory View: Communicating Sequential Processes
I Examples

Concurrent Programming

Concurrency extends the sequential programming model

Do A then B then if C Do D Else Do E
------------------------------------> time

to include multiple executing computations or processes.
A concurrent model is a much more realistic model of the world.

Concurrency is a way to structure software, particularly as a way to
write clean code that interacts well with the real world. – Rob Pike

Examples

I Your operating system (even on a single CPU)
I A web server responding to multiple requests.
I A graphical program responding to user input
I Numerical simulations
I Robot making multiple complex movements
I Control system in a car

Note: concurrent (virtual time) does not (necessarily) imply
parallelism (real time)
On a single CPU a program may be concurrent, but cannot be
parallel.
A concurrent program might take advantage of multiple CPUs
though.

Concurrency is essentially an abstraction of time, or an
ordering of events

T1 :>>>>>>>>>>>>>>>>>>>>>x
T2 :>>>>>X
T3 :>>>>>>>X
-----------------------------> time

Concurrency is essentially an abstraction of time, or an
ordering of events

These events may be linked so there is a dependency

T1 :>>>>>>>>>>>>>>>>>>>>>x
T2 :>>>>>X

\
T3 :>>>>>>>>>>
-----------------------------> time

The input to T3 depends on the output of T2.

Two views of concurrency

I Engineering view: how do you implement concurrency
I CS Theory view: how do you think and reason about

concurrent programs

Basic of Operating Systems: The process

A process is an abstraction by operating systems that allow it to
virtualize a CPU.
This allows more than one program to run, that is appearing to
execute, even with a single processor, a.k.a multi-tasking.
Thus, OS’s were the first place concurrent programming was
encountered.

(greatly) simplified execution on bare hardware (no OS)

I After power-on set PC to a specific address
I starts the fetch-decode-execute cycle from there
I continues until a halt instruction is executed, or the power is

cycled.

An operating system is a program that creates a virtual
representation (abstraction) of both hardware and time.

The OS is the code that starts running at power-up (or shortly
thereafter in the case of BIOS) and

I Virtualizes CPU
I Virtualizes Memory
I Virtualizes IO Devices
I Virtualizes Time

The core of the operating system is the kernel

The kernel executes for a while, then might allow some non-kernel
code (a program) to run by entering it’s main function. When main
returns the kernel picks up and keeps on going until another
program starts. This is how I started programming
(Sinclair,Commodore, Apple II)
Of course this requires the programs be really short, so instead
programs were written to give up control periodically, or yield. The
OS then put these programs in different blocks of virtual memory,
execute one until it yielded, then execute another until it yielded
and so on. This is called cooperative multi-tasking.
The earliest operating systems worked this way: DOS, Windows
before Windows95, Mac OS <= 9,

Preemptive Multi-tasking

Cooperative multi-tasking required cooperation among all programs
running. One bad program failing to yield could lock up a computer,
requiring a power-cycle.
So kernels evolved to enable them to interrupt another program in
order to either execute itself, or to execute another program,
possibly the one previously interrupted. This happened transparently
to the program.

I This is called preemptive multi-tasking and is the dominant
form of operating systems.

I The interruption and change of executing code is called a
context switch.

I Note this removes the requirement of cooperation from
individual programs but places increased responsibility on the
OS to share time fairly.

The abstraction of a running program in an OS is a Process

Memory CPU
+----------+ (low address) Registers
| code | PC
+----------+ Interrupts
| heap |
| | |
| v |
| |
| (free) |
| |
| ^ |
| | |
| stack |
+----------+ (high address)

Each process has its own memory region.

Processes are relatively expensive to create, the solution?

threads, sometimes called light-weight processes
I multiple threads of execution that have separate stacks, but

share the heap
I much faster to start and stop threads because it just is a

re-partitioning of the existing process memory

Side Note: the kernel may also be threaded, so there is (sometimes)
a distinction between kernel threads and user threads.

The process abstraction changes to (two threads)

Memory CPU
+----------+ (low address) Registers
| code | PC
+----------+ Interrupts
| heap |
| | |
| v |
| ^ |
| | |
| stack 2 |
| ^ |
| | |
| stack 1 |
+----------+ (high address)

The OS schedules both process and threads

The main kernel loop (in essence)

do{
// choose new process or thread to run
// save running process state (start context switch)
// set a timer to interrupt (e.g. 8254 or HPET)
// load new process state (end context switch)
// it runs until timer interrupts
// enters OS code and loops

}while(true);

Process versus thread

The essential difference between a process and a thread is how they
communicate.
Process may communicate using

I Pipes / Sockets
I Message Queues
I Shared Memory

This is OS specific, but see boost::interprocess
Threads communicate using a shared heap, over which message
queues and other forms of communication can be written. As of
C++11 this is now standardized, but it used to be OS specific
(win-threads versus pthreads).

An important aspect of concurrency at the OS level is the
scheduler.

The scheduler is the part of the kernel that decides who runs during
a given time-slice.

I Based on a priority system
I Based on what a process is doing
I Schedules both processes and threads within them.

Now for a different view: Communicating Sequential
Processes

The theory behind concurrent programming dates back to
Dijkstra, Guarded Commands, Nondeterminacy, and Formal
Derivation of Programs, Comm. ACM 18(8):453–457 (1975).
Hoare, Communicating Sequential Processes, Comm. ACM,
21(8):666–677 (1978).
This is where much of the nomenclature and design patterns of
concurrency come from.

CSP is a formal mathematical language

Given an event x and a Process P (x->P) describes an object that
engages the event x (“if x”) then behaves as the process P, “x then
P”.
Processes can be composed
(x -> (y -> P)) means “x then the process (y then P)”
can be recursive
P = (x -> P) means “x then x then x then . . . ”
and can make choices
(x -> P | y -> Q) “if x then P or if y then Q”

Example: Vending Machine

VendingMachine = (money (snack VendingMachine))
says
A vending machine receives the “money” event then does the
process “give snack” event ad-infinitum.
In this view programs are compositions of processes and can be
viewed as state diagrams.

Now, we allow the processes to operate in lock-step

(P || Q) means two processes P and Q synchronized also form a
composed process.

Example: A Greedy Customer meets the Vending Machine

Customer = (snack -> Customer | money -> (snack -> Customer))
VendingMachine = (money (snack VendingMachine))
The greedy customer would take a snack for free if it can but would
also choose to give money to obtain a snack.
When these two processes execute together
(Customer || VendingMachine)

The laws of CSP

The CSP theory goes on to establish logical laws about the state of
the world described by a CSP.
If the event sets of two executed processes overlap then they are
communicating.

How we will view concurrency

We will take a more practical engineering view of concurrency.
We will not discuss CSP much more, but I want you to be aware
that the design patterns we will use originate from there.

Next Actions and Reminders

I Read about Qt inter-process communication

