
ECE 3574: Applied Software Design

More Design Patterns



Today we will discuss the design patterns Factory, State,
and Model-View.

I Factory Pattern
I State Pattern
I Model-View (and Model-View-Controller) Pattern



Design Pattern: Factories

When using dynamic polymorphism it is common to have many
types that derive from a common base with the subtype specified at
runtime.

The Abstract Factory pattern is a class that builds subtypes based
on a description, usually derived from user input, and returns a base
pointer to the constructed object. This collects switch-based object
construction code into one place.

See example code.

Note, this works best when using the object does not require casting
(as in good polymorphic design).



Remember: destructors for base classes should be virtual

If you have to manage resources in the derived class, make sure the
base class has a virtual destructor



Design Pattern: State (as in State Machine)

The state pattern uses a private pointer to a state object to
encapsulate behavior based on the state an object is in, with the
ability to transition.

See example code.

This is useful whenever you need to cleanly code a complex state
machine.



Model-View Pattern

The model-view pattern separates data (the model) from the code
used to present it (the view).

Communication happens through a well-defined interface.

Thus any object that conforms to the interface can be viewed
without custom code.

See example1 and example2 code.



Model-View-Controller Pattern

For interactive applications (e.g. GUI) it is common to introduce a
third object called the controller that mediates between user actions,
the view, and the model.

Typically in Qt the models, views, and controllers communicate
using a mixture of events and the signal/slot mechanism.

See example3 code.



Next Actions and Reminders

I Read Chapter 26 of Operating Systems: Three Easy Pieces
I Reminder: Milestone 2 is due 10/24 at 11:59 pm.


