
ECE 3574: Applied Software Design

Design Patterns and Idioms



Today we will discuss the use of design patterns and
common idioms used to write canonical C++ code.

I Common C++ idioms
I Example: RAII
I Example: Copy/Swap
I Example: COW
I Design Patterns
I Example: Iterator



Common C++ Idioms

All programming languages are equivalent in the sense that they are
Turing complete.
However, programming languages (or more properly the community
of programmers) develop idioms, common ways of expressing ideas
that leverages the semantics of that language.
Simple example in C++: removing excess storage from a container,
(e.g. a std::vector)
Prior to C++11

std::vector<int>(c).swap(c);

With C++11 (technically it is still a “non-binding request”)

c.shrink_to_fit();



Another simple C++ idiom: erase-remove

What does the following print?

std::list<int> mylist;
mylist.push_back(0);
mylist.push_back(12);
mylist.push_back(31);
std::cout << mylist.size() << std::endl;

std::remove(mylist.begin(), mylist.end(), 12);
std::cout << mylist.size() << std::endl;

Remove actually does not actually remove! To really remove you
use the “erase-remove” idiom.

mylist.erase(std::remove(mylist.begin(), mylist.end(), 12), mylist.end());



Example: RAII

RAII stands for Resource Acquisition Is Initialization.
See example code



Example: Copy/Swap

We can remove the code duplication and the self assignment test in
the copy-assignment operator using the copy-swap idiom.
See example code



Example: Move semantics in C++11

C++11 defines move semantics that add to RAII and the copy-swap
idiom
See example code



Example: Copy-on-Write (COW)

A big difference between most std::string implementations and
QString is the latter uses COW.
COW is an optimization that lets objects share the same data as
long as neither tries to change it, at which time a copy is made.
Note: Matlab uses this for Matrices.
COW has problems with concurrency, as we will see in a couple of
weeks.
See example code



Design Patterns

Design patterns are similar to Idioms but are less language specific.
They are patterns in the sense of higher-order abstractions of code
design.
See the book Design Patterns: Elements of Reusable
Object-Oriented Software
There are many online compendium of patterns.



Example Design Pattern: PIMPL:
Pointer-to-Implementation

Pimpl decouples the definition and implementation of a class
stronger than via private and public.
Can be usefull for abstracting platform differences without headers
full of macros.
Qt uses the Pimpl pattern extensively.
See example code.



Example Design Pattern: Iterators

Iterators are used throughout the standard library for accessing and
manipulating containers.
They are an abstraction of pointers.
See example code.



Criticisms of Design Patterns

To some extent the patterns are ways of expressing things not
naturally found in the language. Some people consider this a
limitation of the programming language in question.
It is easy to go overboard. Some patterns are overused (in my
opinion), Singleton for example.



Next Actions and Reminders

I Read about the Factory and Model-View Pattern


