
ECE 3574: Applied Software Design

Integration Testing



Today we will take a look at integration testing and
QtTest.

I Techniques for testing command-line applications
I GUI Testing using QtTest
I Examples
I Exercise



Recall our discussion of unit tests

I Unit tests exercise each module, generally a class and
associated functions.

I Treat the public interface as a contract. Your test code checks
the contract.



Integration Tests

Integration tests verify the function of assemblies of modules or an
application overall.



Functional testing of non-interactive applications
I Non-interactive applications which read files and write files

specified through arguments are easy to test.

You write another application to read the output and compare it to
the expected output.

For example consider a non-interactive application that reads
inputfile and writes an outputfile taken as command-line arguments.
In CMake

add_executable(the_app the_app.cpp)
add_exectuable(compare_tool compare_tool.cpp)
add_test(runtest1 the_app inputfile outputfile)
add_test(comparetest1 compare_tool outputfile

${CMAKE_SOURCE_DIR}/output1.expected)

where the file outputfile.expected lives in the source directory.



Functional testing of interactive Text-Mode applications

For simple interactive applications you can pipe in standard input
and pipe out standard output.

$ my_exe < stdin_file > stdout_file

For more complex interactive text-mode applications, e.g. a REPL,
you can use a scripting language like Expect (Tcl) or Pexpect
(Python).



Testing using QtTest
Tests are defined as the private slots of a class derived from
QObject.

A simple example using a single cpp file: mytest.cpp

class MyTest: public QObject
{

Q_OBJECT

private slots:

// define as many tests as you like
void test1() { QVERIFY(true); };

};

QTEST_MAIN(MyTest)
#include "mytest.moc"

This could be used for unit tests in the same way as Catch.



Assertions in QtTest are similar to those in other testing
frameworks

QCOMPARE(actual, expected)
QVERIFY(condition)
QVERIFY2(condition, message)
QVERIFY_EXCEPTION_THROWN(expression, exceptiontype)



Testing a Qt GUI

QTTest can be used for general testing but it really shines for Qt
GUI testing because it can plug into the object tree and signal-slot
mechanism.

You can simulate Clicks and KeyPress events to get objects to
handle events and emit signals as if they were triggered manually.

I QTest::keyClick()
I QTest::keyPress(), QTest::keyRelease()
I QTest::mouseClick(), etc.

See the Qt documentation for details.



To simulate events on a widget you need a pointer to it.

You can search for widgets using QObject (templated) find members

T findChild(const QString &name)
QList<T> findChildren(const QString &name)
QList<T> findChildren(const QRegularExpression &re)

where the argument is the (optional) name property of the widget
being searched for or a Perl-compatible regular expression for
matching names.

I T is the sub-type of QObject
I by default this is done recursively



Example: find a pointer to a widget by type alone

See TestExampleWidget::testFindByType in
test_example_widget.cpp



Example: find a pointer to a widget by name alone

See TestExampleWidget::testFindByName in
test_example_widget.cpp



Example: find a pointer to some widgets by regular
expression

See TestExampleWidget::testFindByTRegExp in
test_example_widget.cpp



Integration of CMake and QtTest

Similar to configuring any Qt app from CMake

set(CMAKE_AUTOMOC ON)
set(CMAKE_INCLUDE_CURRENT_DIR ON)
find_package(Qt5 COMPONENTS Test REQUIRED)

add_executable(mytest mytest.cpp)
target_link_libraries(mytest Qt5::Test)

enable_testing()
add_test(mytest mytest)

You run the tests manually or through cmake (output goes in the
same place Testing/Temporary/LastTest.log).



Exercise

See website



Next Actions and Reminders

I Read about Design Patterns


