
ECE 3574: Applied Software Design

Signals and Slots



Announcements

I Milestone 2 is officially released today, due 10/24.
I I have to cancel my office hours this afternoon.



Today we will learn about a variation of the Observer
design pattern that is used prominently within Qt, called
signals and slots.

I Observer and Publish/Subscribe Pattern
I Observers as callback functions
I Observers using signals
I Qt signals
I Examples
I Exercise



The Observer or Publish / Subscribe design pattern is a
way to communicate among objects without them knowing
much about one another.

Recall the notion of an event handler.

I To call the event handler we need a pointer or reference to the
object handling the event

I This is an example of a callback function

A callback is simply a pointer to a function.



Example 1: a simple callback function

See callbacks.cpp



Example 2: using a member function as a callback

See callbacks_methods.cpp



There are drawbacks to callbacks as illustrated in Example
1 and 2.

I They represent a one-to-one communication
I The communication is always-on

Fixing this requires a good deal of effort to manage the callback
connections.

I make the callback a list of callbacks
I call each callback in the list

Factoring this code out into a library results in managed callbacks,
or signals and slots.



Signals and Slots

I Signals (publishers) are callbacks with multiple targets or slots
(receivers or subscribers).

I Signals are connected to slots
I Signals are emitted
I Slots connected to a signal are called when the signal is emitted

This raises an important issue, how are return values from slots
used?

I Some systems do not use them (Qt)
I Other systems provide a way to aggregate them (boost::signals)



C++ libraries that provide a signal/slot mechanism

I Boost is a very popular collection of C++ library that provides
boost::signal.

I POCO is another popular collection that provides an event
system that works like signals/slots.

I Qt has a signals and slots mechanism implemented as an
extension of C++.



Qt signals and slots extend the syntax of C++.

I Every class that wants to communicate via signals and slots
must derive from QObject directly or indirectly (derive from a
subclass of QObject)

I The class should have the macro Q_OBJECT in its private
section.

I slots are defined in a private, protected, or public section called
slots and implemented

I signals are defined in a section called signals, but not
implemented

I signals are emitted using the keyword emit
I connections are made using the QObject::connect function.

The connections between signals and slots can be synchronous or
queued.



An Example: a settings widget

See qtmain.cpp. receiver_object.*, settings_widget.*,
and settings.h.



Exercise

See website



Next Actions and Reminders

I Read about integration tesing with QtTest
I Start working on Milestone 2!


