
ECE 3574: Applied Software Design

Event Driven Programming



Today we will learn how to design systems that respond to
internal and external events in an application.

I Events and Event Handlers
I Events from Windowing System
I Timers and other internal events
I Observer Pattern
I Callbacks versus Polymorphism for implementing event handlers
I Qt Event System
I Exercise



Events are inputs that are not predictable from the
program flow.

Examples:

I Hardware Event: the user presses a key on a keypad
I Software Event: the user clicks on a button in a windowing

system

The program should be able to respond to these events, i.e handle
them, whenever they occur.



Typically events are collected in an event loop using polling

Round-Robbin

while(true){

// check status of switch
// handle if changed

// ... etc.
}



Typically events are collected in an event loop using polling

Queuing, or posting the event (like onto a bulletin board)

while(true){

// check status of switch
// post the event, queue it to be handled

// ... etc.

// handle N events from the queue
}



The code that is run in response to an event is a handler.

The handler should:

I do the minimum amount of work possible
I never block execution for extended periods

Otherwise the system lags to input or locks up and does not
respond to events.



How much work can be done?

I Each iteration of the event loop should be limited in time.
I How much depends on the application
I in a user interface around 250ms
I in a control loop, perhaps as little as a 1ms
I Add up the total number of events and the time to execute

each



How does one do more work in a handler?

I concurrency, let the OS handle it (see lectures 18-27)
I split work into small chunks, post an event itself
I implement a coroutine, a function that can be restarted where

it left off (not discussed)



Examples of Events from a Windowing System

I show/draw/render the object
I focus the object
I mouse enter/leave
I mouse down, up for left, right, middle, etc
I key K press/release
I resize object
I move object
I gestures



Examples of internal events

I timers
I events posted by other handlers
I hardware interrupts



Event systems are an example of the Observer Pattern

Observers are objects which observe other objects. Possible
implementations:

I callback functions
I dynamic polymorphism (inheritance)

See example code.



Exercise

See website



Next Actions and Reminders

I Read about Qt Signals and Slots
I Milestone 1 is due tomorrow 9/28. Be sure to:

I tag your version for grading
I push your changes to GitHub before the deadline

git tag milestone1
git push origin milestone1


