
ECE 3574: Applied Software Design

Composition



Today we will learn how to build up complex concepts and
models from simple parts.

I Composition models “has-a”
I Examples
I Composition and the Law of Demeter
I Composition and Qt
I Exercise



Composition is a major way of modeling has-a relationships

A composite type has member variables that correspond to its
components.

class Foo
{

ComponentType component;
}



Classic Example: People, Employees, and Customers

A Person has-a

I name
I age
I address

An Employee is-a Person and has-a

I id
I role
I salary



Classic Example: People, Employees, and Customers

A Person has-a

I name (first/last?)
I age (possibly unknown?)
I address (format?)

An Employee is-a Person and has-a

I id (unique?)
I role (static or dynamic?)
I salary (currency?)

Is a customer always a person?



Prefer Composition to Inheritance

Inheritance is overused and leads to tight coupling.

Composition

I gives the most flexibility with least coupling
I shorter compile times, a member can be a pointer, thus only

declared
I less error prone, no private/protected/public

Use inheritance only when you need to implement is-a relationships
that require polymorphism.



Sometimes has-a is just as good as is-a

Consider the Employee is-a Person.

A Person could also have-a Job.



Ontology

Ontology is the name used for defining objects and their
relationships.

Composition and Inheritance in C++ gives us the primary means to
model the world.

Each problem domains have their own ontologies



Composition is very useful in GUI design

For example, a window has-a

I menu
I controls
I view

A menu has-a . . .

A control has-a . . .

A view has-a . . .



Exercise

See website



Next Actions and Reminders

I Read about Qt Event System


