
ECE 3574: Applied Software Design

Dynamic Polymorphism using Inheritance



Today we will learn more about code reuse via dynamic
polymorphism.

I Subtyping and Object Hierarchies
I Abstract Base Classes as Interfaces
I Dynamic Casting
I Qt Object Model
I Qt Ownership
I Examples

There is no exercise today.



C++ Inheritance and Base Classes

I C++ has several mechanisms to reuse code.
I One of them is polymorphism (many-form), where a class can

inherit methods from one or more other classes.

Polymorphism means selecting what code to run based on the type.



Classic Shape Example

Suppose we wanted to have classes that model closed 2D shapes.
There are things that every 2D shape has, for example a perimeter.
We can ensure that any class that implements a specific 2D shape
has an appropriate method by first defining a base class

class Shape2DBase
{
public:

virtual double perimeter() = 0;
};



Classic Shape Example

Note the use of the keyword virtual which means it can be
redefined in subclasses and the = 0 syntax which says this class
does not provide an implementation on purpose. Defined this way
we can’t instantiate such a class – the following will not compile

Shape2DBase shape;



Classic Shape Example
We can define and implement a setup of classes that conform to the
base class using public inheritance (there are other kinds we are
ignoring for now). For example we might define a Circle as

class Circle: public Shape2DBase
{
public:

Circle(double r): radius(r) {};

double perimeter()
{

return 2*M_PI*radius;
}

private:
const double radius;

};

We might continue with classes for Square, Rectangle, Ellipse, etc.
each inheriting from Shape2DBase and implementing the perimeter
method appropriate to the shape they model.



Classic Shape Example

This is handy because, while I can’t instantiate the Shape2DBase, I
can a pointer or a reference to one. So I could define a function
that works for any subclass of Shape2DBase (lets say I want to
show the perimeter) as

void show_perim(Shape2DBase & shape)
{

std::cout << "Perimeter = " << shape.perimeter() << std::endl;
}

I can then pass a Circle, Square, etc to the function. Since it knows
the classes have a perimeter method it can call it. Example

Circle c1(1.0);

show_perim(c1);



Templates versus Base Classes

You might have noticed this looks similar to templates. For example
I could define Circle, Square, etc without inheritance but still
defining a perimeter method, then define the function as a template

template<typename T>
void show_perim(T & shape)
{

std::cout << "Perimeter = " << shape.perimeter() << std::endl;
}

You are right! The difference is one between runtime and compile
time, or dynamic versus static polymorphism.



dynamic versus static polymorphism

Static polymorphism (also called parametric or compile-time
polymorphism):

I Pro: can check assumptions at compile time
I Pro: allows the compiler to optimize
I Con: leads to larger binary code
I Con: cannot switch code at runtime

Dynamic polymorphism (also called Subtyping):

I Pro: allows switching at runtime (for example based on input)
I Pro: has smaller binary size
I Con: requires runtime/dynamic casting
I Con: can’t selectively optimize since it happens after

compilation



Polymorphism means selecting what code to run based on
the type.

Dynamic polymorphism means the selection happens at runtime.

The basic language mechanisms are:

I Inheritance or Derivation
I Virtual Functions, also called dynamic dispatch or runtime

dispatch
I Encapsulation via private/public



Inheritance allows us to build one class from another.

Represents an “is-a” relationship. A Circle is a Shape.

You specify the base class after declaring the derived class as

class BaseClass {};
class DerivedClass: public BaseClass {};

The public part means that the public members of BaseClass are
inherited and become public members of DerivedClass.

Note the above is equivalent to

struct BaseClass {};
struct DerivedClass: BaseClass {};

since struct members are public by default.



Review: private, protected, and public

I members that are private can only be accessed by members in
the same class

I members that are protected can only be accessed by members
in the same class and those derived from it

I members that are public can be accessed by any functions

Note, this simplified version ignores friend access



private, protected, and public inheritance

I private inheritance means that the public and protected
members of the base class can only be used by the derived class

I protected inheritance means that the public and protected
members of the base class can only be used by the derived
class and any classes derived from it

I public inheritance means that the public members of the base
class can be used by any function

Note, there is no way to inherit the private members of a class.



Summary: private inheritance

So

class BaseClass {};
class DerivedClass: private BaseClass {};

means that the the public and protected members of BaseClass
become private members of DerivedClass.

This is less common than the others, but can be useful for writing
adapters.



Summary: protected inheritance

class BaseClass {};
class DerivedClass: protected BaseClass {};

means that the the public and protected members of BaseClass
become protected members of DerivedClass.

This is used for keeping functionality within the tree of objects.



Summary: public inheritance

class BaseClass {};
class DerivedClass: public BaseClass {};

means that the the public members of BaseClass become public
members of DerivedClass.

This is the most used, and presents the client code with a
polymorphic interface.



A graphical view

Inheritance allow you to specify a tree relationship among types



Virtual Functions
Declaring a method virtual means that it can be overridden in the
Derived class, but need not be.

Note that you can redefine the method in DerivedClass even if it
is not marked virtual, but it will not be called when represented as
the BaseClass. This is a source of much pain. If you intend for a
method to be overridden, mark it as virtual.

Note the virtual keyword is not used in the implementation if
outside the class definition.

To force the derived class to implement the method you make it
pure as

struct BaseClass {
virtual void aMethod() = 0;

};

Take care when overriding that the name and arguments match.
The compiler can’t catch all the likely mistakes here.



C++ allows multiple inheritance

class Base1 {};
class Base2 {};

class Derived: ACCESS Base1, ACCESS Base2

where ACCESS can be private, protected, or public.

This feature is much maligned because it creates confusion around
what gets inherited.

It is useful though for defining an interface.



An interface is a base class with only pure virtual methods.

This allows you to express that a class implements that interface
explicitly, and the compiler verifies that it at least implements the
methods.

When used with multiple inheritance this allows you to express that
some parts of an object tree implement a certain interface.

Example:



Heterogeneous Collections using a Base Type

Since a pointer or reference to a base object can actually refer to a
derived object, you can defined containers of mixed type (within the
object hierarchy)

See example code



Dynamic Casting

Given a pointer to a base class you can attempt to convert it back
to a derived type using dynamic_cast.

See code

This works for up-cat (but is unnecessary), down-cast, and
sideways-cast.



An important point: any base class should define its
destructor as virtual.

If you don’t then if you call delete on a base pointer to a derived
object, the derived destructor is not called.

I any class designed to be used as a base class will have a virtual
destructor

I I repeat, do not derive from a class that has a non-virtual
destructor.

See example.



Some remarks about dynamic polymorphism

I There are many places for bugs to hide
I Don’t get carried away with defining object hierarchies.
I Excessive casting is a code smell



Uses of Dynamic Polymorphism

Dynamic Polymorphism is very useful when you want to treat
objects (instances of classes) as hierarchical data.

I Graphical user interfaces are ideally suited to polymorphism.
They are just trees of widgets. Code to layout and draw
widgets should be independent of the specific interface.

I Rendering of dynamic objects, for example in simulations or
games, should be independent of the specific objects involved.

I Employees are people that have categories and form
departments, units, divisions, etc.



Qt Object Hierarchy

In Qt QObject is the base of everything. This is critical to how the
properties and signals/slots are implemented.

So, any class you write that needs to communicate with Qt should
derive from QObject.

Simple example: a class that can receive a print signal from another
QObject.

class Printer: public QObject
{
Q_OBJECT
public slots:

void print();
};



Qt Memory Ownership

Qt objects form trees so that each object has a parent.

Heap allocated objects are owned by their parents and destroyed
when their parents are.

For stack allocated objects take care the parent object is
instantiated before children.



Next Actions and Reminders

I Read about Composition
I Milestone 1 is due 9/28. Be sure to:

I tag your version for grading
I push your changes to GitHub before the deadline

git tag milestone1
git push origin milestone1


