
ECE 3574: Applied Software Design

Introduction to Qt



The goal of today’s meeting it to learn about about a
popular cross-platform library called Qt.

I Windows and Event Loops
I Widgets
I Signals and Slots
I Meta-Object Compiler
I Exercise



User Interaction

In C++ (including the standard library), the built-in mechanisms for
user input are

I specifying command line arguments (not interactive)
I standard input (interactive but synchronous)
I signals, e.g. Control-C (asynchronous)



C++ itself also has nothing to say about displays.

The standard library assumes only standard output and standard
error.

I The OS provides the notion of a console
I a way to enter input into standard input one line at a time,
I and a way to view standard output/error.
I multiplexes different programs input/output
I this interaction dates to the very early days of computing

This provides powerful language-style interaction but is limited the
kind of user interaction that can be supported.

See: “In the Beginning was the Command Line” by Neal
Stephenson.



Modern OSs often provide some abstraction of a graphical
display

A library which interacts with the display hardware (vector or
bitmap). It provides

I a way to draw 2D shapes and/or images on the screen
I a way to register user events related to those objects (clicks,

etc)
I a way to multiplex different programs on the same display

(focus)



The dominant abstraction is called WIMP

WIMP = windows, icons, menus, pointer

I the display is made up of a set of windows
I a program has access to one or more windows
I a window is a collection of widgets
I a pointing device is used to register actions on a widget (event)
I the program can change the visual appearance of the widget

(draw or render)

The main concept is the event-loop.



Event Loop

1. Draw the widgets
2. Collect all events
3. Process all events
4. Goto 1

I This loop takes over the main thread of the program.
I All work (in a single threaded application) happens in the event

loop.
I Called Event Driven Programming. Event cause code to run

changing the program state and causing side effects.



The windowing system library is platform dependent

Common native windowing libraries:

I On Windows: Win32 (C), MFC (C++) , WPF (C#)
I On Mac: Carbon, Quartz (Objective-C)
I On Unix: X11 (C)

Maintaining an application across all three platforms is cumbersome,
but sometimes warranted.



An alternative is to use another library layer that abstracts
away the platform

I GTK+
I WxWindows
I FLTK
I Qt

We will be discussing Qt, a huge library, focusing on the GUI part.



In Qt widgets and events are objects.

I QApplication handles the event loop
I Your user interface code is embedded in a widget (using

dynamic polymorphism)
I Events are delivered to your widget if appropriate (events are

filtered)
I If your widget needs to change it calls a method called update

Events can trigger other events. In this view a program is a
collection of widgets communicating via events.

See http://doc.qt.io/qt-5/eventsandfilters.html



Exercise 09: A Basic Qt Window

See the website.



Qt also uses another parallel form of communication
among widgets.

Signals and Slots

I extends C++ syntax to add slots, special member functions
I requires a code generator (meta-object compiler or moc)
I code can emit signals, which are objects
I these signals can be connected to slots, members of other

objects
I when an signal is emitted it is sent to all slots that it is

connected to

Allows dynamic and one-to many communication among objects as
opposed to just calling a member (one-to-one).



Next Actions

I Read links on Dynamic Polymorphism
I Continue work on Milestone 1


