
ECE 3574: Applied Software Design: Static
Polymorphism using Templates

Chris Wyatt



Today we will look at how to reuse code using
polymorphism and specifically static polymorphism through
generic programming

I Generics in C++ using Templates
I Static Polymorphism
I Exercise 04: How does std::vector work?



Generics in C++

I Templates elevate types to be generic, named but unspecified,
and can work with functions and classes.

I Templates allow code reuse as long as the types meet the
functionality required by the template

I The C++ standard library uses templates extensively



Example 1: template function to swap

A simple example is a function to swap the contents of two variables
(similar to std::swap):

template< typename T >
void swap(T& a, T & b)
{

T temp(b);
b = a;
a = temp;

}



Example 1: template function to swap
The symbol T acts like a variable, in fact it is a type variable.
Defined this way swap is generic, I can use it on any type that can
be copied. For example:

int a = 1;
int b = 2;

std::cout << a << ", " << b << std::endl;
swap(a,b);
std::cout << a << ", " << b << std::endl;

std::string A = "foo";
std::string B = "bar";

std::cout << A << ", " << B << std::endl;
swap(A,B);
std::cout << A << ", " << B << std::endl;



Example 1: template function to swap
If the type does not support a particular usage it generates a
compile time error. For example suppose I wrote a class that
explicitly does not allow copies

class NoCopy
{
public:

NoCopy() = default;
NoCopy(const NoCopy & x) = delete;

};

and tried to use swap as

NoCopy x,y;
swap(x,y);

My compiler complains

swapexample.cpp:7:5: error: call to deleted constructor of 'NoCopy'
T temp(b);



Example 2: template class to hold a pair of objects
Templates work with classes as well. For example, we might define a
tuple holding two different types (aka std::pair) as

template <typename T1, typename T2>
class pair
{
public:

pair(const T1 & first, const T2 & second);

T1 first();
T2 second();

private:
const T1 m_first;
const T2 m_second;

};



Example 2: template class to hold a pair of objects
And implement it like

template <typename T1, typename T2>
pair<T1,T2>::pair(const T1 & first, const T2 & second)
: m_first(first), m_second(second)
{}

template <typename T1, typename T2>
T1 pair<T1,T2>::first()
{

return m_first;
}

template <typename T1, typename T2>
T2 pair<T1,T2>::second()
{

return m_second;
}



Example 2: template class to hold a pair of objects

We might use it like so

pair<int,std::string> x(0, std::string("hi"));

std::cout << "First = " << x.first() << std::endl;
std::cout << "Second = " << x.second() << std::endl;



Organizing Template Code

The full implementation of a template must occur in the same
translation unit. Thus they cannot be compiled and linked
separately.

I We still would like to organize our code into a separate
definition (header, .hpp) and implementation file (.cpp)

I Just include the implementation file at the bottom of the
header file

I To prevent confusion the implementation file is often given a
different extension (.tpp or .txx).



Exercise 04: How does std::vector work?

See website.



Next Actions and Reminders

I Read through a C++ standard library containers reference
I Reminder: Milestone 0 is due Friday 9/7.


