
ECE 3574: Applied Software Design

Meeting 2: Version Control



The goal of the next few meetings is to learn about
programming tools other than the compiler and how to use
representative versions of them.

I Source Code Management (Version Control)
I Source Code Configuration and Build
I Testing Tools



Text Manipulation

I Plain text is the raw material of programming and the most
stable digital form of storing knowledge.

I You need to be adept at creating it, modifying it, searching it,
and filtering it.

I A key tool is your editor.

Pick a powerful one and learn how to use it effectively
(e.g. keyboard shortcuts).



Source Code Management, also called version control or
source code control

I keeps track of every change made to your code (and by whom).
I It can act as an unlimited undo for your project
I documents what changes were made, by whom, and when
I provides archiving and reproducibility of software builds.

Always use some form of source code management, even for
small projects.

We will be using git for this, although there are other good
alternatives (mercurial, subversion).

http://git-scm.com


Software Configuration and Build tools

You should be able to build all dependencies and the code itself, in
debug and release mode, for all platforms supported in a single
step.

This can be done by a variety of means, including customs scripts
and IDE tooling. We will be using a popular open source tool for
this called cmake.

http://www.cmake.org%22


Testing and Status

I Untested Code is Broken Code
I You should be able to also run the tests associated with a

project in a single step.
I This should be a regular part of the build process.
I Examples: Catch, CxxTest, Google Test, CppUnit (and many

more)

CMake includes a way to specify tests to run as part of the build
process so we will use that. We will spend an entire class meeting
on this important topic in week three. This week we will look at the
very basics using Catch.



Static Checkers

I Static typed languages like C++ allow a large class of bugs to
be caught before the code is run.

I Modern compilers provide a number of checks that can be
applied, although external tools exist as well.

I The compiler can generate warnings to prevent a large class of
bugs. In particular code should compile cleanly with no
warnings.

I There are also tools like cppcheck and cpplint that can carry
out specific checks. Teams often have their own per-projects
scripts as well.



Dynamic Checkers

I Once code is compiled and run it can also be checked for
errors, usually by instrumenting the code automatically or at
the run-time level.

I This can be used to detect a wide variety of problems, notably
memory mismanagement.

I Examples: the valgrind suite of tools under unix and the VC++
leak detection facilities on Windows.



Code Style Checkers

I C++ is a very large and complex language. It is often desirable
to limit the parts of the language used.

I Because code is read much more than it is compiled, uniform
formatting and style rules are needed.

I This applies to personal projects, where you might be reading
you own code months (or years) after writing it, as well as
multi-person projects.

I Each organization and project will have its own style guidelines
as there is no one-true-style

I Fortunately many of the pedantic rules, where braces go, etc.,
can be fixed automatically.

I Example tools: Artistic Style, clang-format



Code Generators

I Code generators are “code that writes code”, programs that
output code, usually from some form of textual input.

I These come in two forms, passive and active.
I Passive generators are run only once and are appropriate for a

few use cases, for example generating source files from
templates or for generating look-up tables.

I Active generators run each time the build is run. We will see
an example of an active code generator from the QT library
this semester, the Meta-Object Compiler, or moc.



Course Tools

In this course we will use just a few tools from those available

I git for managing source code (command-line or GUI)
I cmake for build configuration
I Testing using Catch and Qt testing framework
I code coverage and memory checkers



Git Demo

I init - initialize a new repository
I clone - clone an existing repository: local and remote
I status - see the state of your repository
I diff - examine details of what has changed
I add - adding changes to the index
I commit - commiting the changes in the index
I log - list previous changes
I push - pushing changes “upstream”
I tag - give your commits names



Exercise 02: Git

See Website.



Next Actions

I Reading on VirtualBox and Vagrant


