Zero-Input Response

Laithi 2.1 & 2.2

- time domain analysis
- zero-input response

This class covers three techniques for analysis of signals & systems.

Tool of choice: X(t) -> ____________________ -> y(t)

"Time Domain" analysis
The domain of the functions is t ∈ \(\mathbb{R} \).

The tool of choice is algebra

\[X(s) \rightarrow \text{[]} \rightarrow Y(s) \]

"Laplace Domain" analysis
The domain of the functions are \(s \in \mathbb{C} \).

The tool of choice is algebra

\[X(\omega) \rightarrow \text{[]} \rightarrow Y(\omega) \]

"Fourier Domain" analysis
The domain of the functions are \(\omega \in \mathbb{R} \).

Time domain analysis of Linear Time-Invariant Continuous Systems (LTICT) is equivalent to solving linear constant coefficient differential Equations.

Define the operator

\[D^n = \frac{d^n}{dt^n} \begin{bmatrix} \end{bmatrix} \]

The general form is then:

\[\frac{d^n y}{dt^n} + a_1 \frac{d^{n-1} y}{dt^{n-1}} + \ldots + a_N y = b_{n-m} \frac{d^m x}{dt^m} + b_{n-m-1} \frac{d^{m-1} x}{dt^{m-1}} + \ldots + b_0 x \]

or in operator form

\[(D^n + a_1 D^{n-1} + \ldots + a_N) y = (b_{n-m} D^m + b_{n-m-1} D^{m-1} + \ldots + b_0) x \]
So \(N \) = order of the LHS \(M \) and of RHS \(N > M \) in practice (we will see why later)

The LHS polynomial of operators we denote \(Q(D) \)

The RHS polynomial of operators we denote \(P(D) \)

Then we have \(Q(D) y(t) = P(D) x(t) \)

Recall from your differential equations course the method used to solve linear constant coefficient DEs was to split \(P(D) \) into the homogeneous solution (aka natural response) \(y_n(t) \) and the particular solution (aka forced response) \(y_f(t) \).

The total response \(y(t) = y_n(t) + y_f(t) \)

The natural response is the solution of \(Q(D)y_n(t) = 0 \)

which consists of a linear combination of the characteristic modes, the roots of the characteristic Eq \(Q(D) = 0 \). The constants of the solution are determined from the auxiliary conditions \(y(0^+), y'(0^+), y''(0^+) \) etc.

E.g.

\[y' + ay = ax \quad a = \frac{1}{RC} \]

\[Q(D) = D + a \quad y_n(t) = Ce^{-at} \quad t \geq 0^+ \]

\[y_n(t) = Ce^{-at} \quad t \geq 0^+ \]

need \(y(0^+) \)

\[\text{For } t < 0 \]

\[\text{For } t > 0 \]

\[y(0^-) = V \]

\[y(0^+) = V \]

\[\frac{dv_n(t)}{dt} = \frac{V}{RC} \]

\[\text{Voltage cannot change instantaneously} \]

\[\text{thus} \]
E.g. continued... what if I reverse the components

\[C_{Vc}' = \frac{y'}{R} \quad V_c = x - y \]
\[V_c' = x' - y' \]
\[(x' - y') = \frac{y}{RC} \]
\[y' + \frac{1}{RC} y = x' \quad \text{let } a = \frac{1}{RC} \]

\[Q(D) = D + a \]

\[y_n(t) = Ce^{-at} \]

need \(y(0^+) \)

- For \(t < 0 \)

\[y(0^-) = 0 \quad \frac{1}{R} \int_{0^-}^{0^+} y_c \, dt = 0 \]
\[V_c(0^-) = V \]

- Conclusion: it is easier for us to find initial conditions at \(0^- \) than at \(0^+ \) (auxiliary conditions)

- So what about the forced response? The most common solution method is the "method of undetermined coefficients."

Given an input with a finite number of independent derivatives, there is a generic forced response, e.g.,

\[x(t) = \cos (\omega t) \]
\[y_f(t) = A \cos (\omega t) \]

where the constant is found by equating coefficients

\[Q(D)y_f(t) = P(D)x(t) \]

- Conclusion: this method does not work for every input.
For these reasons the classical methods from DE don't work very well for us. So we will use a different expansion of the solution:

\[y(t) = y_0(t) + y_{zs}(t) \]

\(y_0(t) \) is the zero-input response, the solution of
\[Q(D)y_0(t) = 0 \quad \text{given } y(0^-), y'(0^-) \quad \text{ auxiliary conditions} \]

\(y_{zs}(t) \) is the zero-state response, the solution of
\[Q(D)y_{zs}(t) = p(D)x(t) \quad \text{with } y(0^-) = 0, y'(0^-) = 0 \quad \text{ etc.} \]

Example: Given the following circuit, what is the zero-input response.

Where \(V_c(0^-) = V \).