Introduction to Systems.
- System Definition
- System Modeling
- Examples

A system is a transformation between one or more signals, a rule that maps functions to functions.

\[X(t) \rightarrow T \rightarrow Y(t) \]

- **Single Input - Single Output (SISO)**
 \[X(t) \rightarrow T \rightarrow Y(t) \]

- **Single Input - Multiple Output (SIMO)**
 \[X(t) \rightarrow T \rightarrow Y(t) \]

- **Multiple Input - Multiple Output (MIMO)**

Recall signals are functions from independent variables to a range of values.

We can view system similarly.

\[t \rightarrow T \rightarrow f(t) \]

\[x(t) \rightarrow T \rightarrow y(t) \]

Let \(X \) be the set of all input signals.

\(Y \) be the set of all possible output signals.

Then a system \(T \) is a mapping from \(X \) to \(Y \).

\[X \rightarrow T \rightarrow Y \]

Examples:

- \(x(t) = e^{-t} \)

- \(x(t) = \sin(\pi t) \)

- When \(X \) and \(Y \) are the set of \(eT \) signals we call it a continuous-time system.

- When \(X \) and \(Y \) are the set of \(DT \) signals we call it a discrete-time system.
- When \(x \) and \(y \) are different sets, e.g., \(\mathbb{R} \) or \(\mathbb{C} \), we call it a hybrid or mixed system. If \(x \) or \(y \) is a system, then it is autonomous. Examples: What are inputs, outputs?
 - a circuit consisting of R, L, C, op-Amps?
 - a music program like Audacity or GarageBand?
 - an MP3 player? (go over in detail)
 - breaking system in a car?
 - animals (including humans)?
 - an interstate highway?

This list goes on and on, almost anything of interest that changes with time can be viewed as a system.

- We can represent systems multiple ways
 - mathematically
 - graphically
 - and we can convert back and forth.

- In general, for systems the most common (and most widely applicable) mathematical representation is the differential equation.

\[
\dot{\mathbf{x}} = f(\mathbf{x}, \mathbf{u}, t) \\
\mathbf{y} = g(\mathbf{x}, \mathbf{u}, t)
\]

- The rationale for this choice is DEs are equations whose solution is a function.

- Different kinds of systems correspond to different kinds of DEs, some with simpler mathematical representations.

For us, the class of linear, time-invariant systems,
Let's look at some examples. To model the system, we identify input output.

1. Identify input output
 - Consider two series R-C circuit.
 - Input is voltage signal, output could be
 - Loop current
 - Resistor voltage
 - Capacitor voltage.

2. To derive the DE, we use the laws of circuits.
 - KCL: $\frac{v(t) - v_c(t)}{R} = c \frac{v_c'(t)}{R}$
 - Rearrange: $v_c'(t) = -\frac{1}{RC} v_c(t) + \frac{1}{RC} v(t)$
 - $\dot{y} = f(x, u)$, $x = v(t)$, $u = v_c(t)$
 - $f = -au + bx$

The output equation depends on the problem.

- Interested in capacitor voltage.
 - $y = v_c \Rightarrow u = g(x, u) = u$

- Interested in Resistor voltage.
 - $y = v - v_c \Rightarrow y = g(x, u) = x - u$

- Interested in loop current.
 - $y = \frac{v - v_c}{R} \Rightarrow y = g(x, u) = a(x - u)$

- So we can view this as a CT SISO system

Graphically

Mathematically

Extends $x(t) \rightarrow \square \rightarrow y(t)$

$\dot{u} = -au + bx$ (internal)

$y = u \quad a = b = \frac{1}{RC}$ (external)
It does not matter where the DE comes from.

Example: Mechanical System

\[y = \text{position} \quad M = \text{mass} \]
\[y' = \text{velocity} \quad k = \text{spring constant} \]
\[y'' = \text{acceleration} \quad B = \text{coefficient of friction} \]

Newton's Laws:

\[
y'' + \frac{B}{M} y' + \frac{k}{M} y = \frac{1}{M} f
\]

Free Body Diagram

Example: Parallel RLC with a Current Source.

Physical Laws

\[\dot{I}_C = CV_i \]
\[V_L = L \dot{I}_L \]

KCL Sum Current is Zero

\[
R \frac{d^2 I}{dt^2} + L \frac{d I}{dt} + \frac{1}{C} I = \frac{1}{C} x(t)
\]

Treating \(I \) as the output of interest, \(y \).

\[
y'' + \frac{1}{RC} y' + \frac{1}{LC} y = \frac{1}{LC} x
\]

Compare this to the previous example.

\[
R = \frac{1}{B} \quad L = \frac{1}{k} \quad C = M \quad \text{they are identical.}
\]

To translate between mechanical and electrical systems:

- **Voltages** \(\rightarrow \) **Velocities** or **Force**
- **Currents** \(\rightarrow \) **Forces**
- **Resistance** \(\rightarrow \) **Friction**
- **Capacitance** \(\rightarrow \) **Mass**
- **Inductance** \(\rightarrow \) **Compliance** or \(\frac{1}{k} \)