some properties of periodic functions
- even/odd signals
- impulse signal
- step signal
- singular value functions

Recall the periodic functions are those for which
\[f(t) = f(t + nT_0) \quad n \in \mathbb{Z} \quad T_0 \in \mathbb{R} \]

Some helpful properties

- if \(f(t) \) is periodic with period \(P \) and \(g(t) \) is any function then \(g(f(t)) \) is periodic with period \(P \).

 Example: \(f(t) = \sin(2\pi t) \quad P = 1 \)
 \[g(x) = x^2 \]
 \[\sin^2(2\pi t) \text{ is periodic with } P = 1 \]

- if \(f(t) \) is periodic with period \(P \) and \(g(t) \) is periodic with period \(Q \) and there exists positive integers \(a, b \) s.t. \(aP = bQ = 1 \).

 then \(f(t) + g(t) \) and \(f(t)g(t) \) are periodic with period \(R = \frac{1}{aP} \).

 Example: \(f(t) = \sin(2\pi t) \quad P = 1 \)
 \[g(t) = \cos(10\pi t + \frac{\pi}{4}) \quad Q = \frac{1}{5} \]
 if \(a = 2 \quad b = 10 \) then
 \[\sin(2\pi t)\cos(10\pi t + \frac{\pi}{4}) \text{ is periodic with period } R = 2 \]

- The last property implies that \(P \) and \(Q \) must both be rational in \(\Pi \) or neither.

 Example: \(f(t) = \sin\left(\frac{\pi}{2} t + 3\right) \quad f = \frac{\pi}{2} \quad P = 1 \)
 \[g(t) = \cos(5t) \quad f = \frac{5}{2\pi} \quad Q = \frac{2\pi}{5} \]
 there is no \(a, b \in \mathbb{Z} \) s.t. \(a \cdot \frac{1}{2} = b \cdot \frac{2\pi}{5} = R \)
Even/Odd signals

- A signal is \textit{even} if \(f(t) = f(-t) \) \(\forall t \)
 - e.g., \(\cos(t) \) is even, \(\sin(t) \) is not.

- A signal is \textit{odd} if \(f(t) = -f(-t) \) \(\forall t \)
 - e.g., \(\sin(t) \) is odd, \(\cos(t) \) is not.

- Every signal can be written as a sum of even and odd signals
 \[f(t) = f_e(t) + f_o(t) \] where
 \[f_e(t) = \frac{1}{2} \left[f(t) + f(-t) \right] \]
 \[f_o(t) = \frac{1}{2} \left[f(t) - f(-t) \right] \]

Note: \(\int_{-\infty}^{\infty} f_e(t) \, dt = \int_{-\infty}^{\infty} f(t) \, dt \)
and
\(\int_{-\infty}^{\infty} f_o(t) \, dt = 0 \)
This identity will come in handy, a few times this semester.

- Example: write \(x(t) = e^{-5t^2} (\sin(2\pi t) + \cos(2\pi t)) \) as even/odd components,
 \[x_e(t) = \frac{1}{2} \left[x(t) + x(-t) \right] = e^{-5t^2} \cos(2\pi t) \]
 \[x_o(t) = \frac{1}{2} \left[x(t) - x(-t) \right] = e^{-5t^2} \sin(2\pi t) \]

- The above example demonstrates some properties of even/odd signals.
 - The product of two even signals is even.
 - The product of an even and an odd signal is odd.
 - The product of two odd signals is even.
* Impulse Function

Another important signal is the Dirac Delta function, aka the impulse function.

\[\delta(t) = \begin{cases} 0 & t \neq 0 \\ \infty & t = 0 \end{cases} \text{ where } \int_{-\infty}^{\infty} \delta(t) \, dt = 1 \]

The impulse models a "kick" to the system.

- Mathematically, the impulse is not a function, but a distribution. We can gain some appreciation of this by looking at some equivalent \textit{def's}.

\[\delta(t) = \lim_{\varepsilon \to 0} \frac{1}{\varepsilon} \text{rect} \left(\frac{t}{\varepsilon} \right) = \begin{cases} \frac{1}{\varepsilon} & \text{ for } \varepsilon \text{ at } t \\ 0 & \text{ else} \end{cases} \]

\[\delta(t) = \lim_{\varepsilon \to 0} \frac{1}{\sqrt{\pi \varepsilon}} e^{-\frac{t^2}{\varepsilon}} \text{ the Gaussian function} \]

\[\delta(t) = \lim_{\varepsilon \to 0} \frac{1}{\varepsilon} \left[\frac{\sin \left(\frac{\pi t}{\varepsilon} \right)}{\frac{\pi t}{\varepsilon}} \right]^2 \text{ the sinc}^2 \text{ function} \]

- Two useful properties of the impulse function:

 - Sampling \(f(t) \delta(t) = f(0) \delta(t) \)

 - Sifting \(\int_{a}^{b} f(t) \delta(t) \, dt = f(0) \) for any \(a < 0 < b \)

Q: Would you consider \(\delta(t) \) even or odd?
Unit Step or Heaviside Function.

We have already been using this function,

\[
U(t) = \begin{cases}
0 & t < 0 \\
1 & t > 0
\end{cases} \quad \text{or} \quad U(t) = \begin{cases}
1 & t = 0 \\
1 & t > 0
\end{cases}
\]

- \(U(t)\) models a switch

\[
f(t) = \begin{cases}
0 & t < 0 \\
1 & t = 0 \\
0 & t > 0
\end{cases} \quad \text{or} \quad f(t) = U(t)
\]

- The unit step can be defined in terms of the impulse and vice-versa

\[
U(t) = \int_{-\infty}^{t} \delta(r) \, dr \quad \text{and} \quad \delta(t) = \frac{dU}{dt}
\]

- Using the notion of distributions.

E.g.

\[
\delta(t) = \lim_{\varepsilon \to 0} \frac{1}{\varepsilon} e^{-\frac{t^2}{2\varepsilon^2}}
\]

Demonstration

\[
U(t) = \int_{-\infty}^{t} \delta(r) \, dr = \lim_{\varepsilon \to 0} \int_{-\infty}^{t} \frac{1}{\sqrt{\pi \varepsilon}} e^{-\frac{r^2}{2\varepsilon}} \, dr
\]

\[
= \lim_{\varepsilon \to 0} \frac{1}{2} \left(1 + \text{erf} \left(\frac{t}{\sqrt{2\varepsilon}} \right) \right)
\]

- We can also use the unit step to define other signals.

E.g. Ramp

\[
R(t) = \int_{-\infty}^{t} U(r) \, dr = t \, U(t)
\]

E.g. Pulse

\[
P(t) = U(t) - U(t - \varepsilon)
\]

a pulse of length \(\varepsilon\)