
ECE 2574: Data Structures and Algorithms -
STL Containers and Algorithms

C. L. Wyatt

The goal of today’s meeting is to review the standard
library

I Containers and Iterators
I Algorithms

“The best code is that already written and tested”

The C++ standard library is well-constructed and tested

I prefer to use containers and algorithms from the standard
library rather than hand-coded data structures and algorithms.

In this course we saw how to implement data structures and
common algorithms for sorting and searching. However, the C++
standard library provides implementations of these that are efficient
and well tested, so you should prefer to use them over hand-coded
approaches whenever feasible.

std::array is a wrapper around raw arrays

I supports standard access members (at, [], front, back)
I has a size() member
I supports fill and swap
I can be empty
I very low overhead

Example:

std::array<int,10> a;
a.fill(1);
assert(a[3] == 1);
assert(a.size() == 10);

std::vector is a dynamically sized array-based container

I the most useful linear data structure
I see members size, capacity, and reserve
I grows exponentially
I supports insert - much more efficient than you might think
I watch out for iterator invalidation

Example

std::vector<int> v;
std::cout << v.capacity() << std::endl;
for(int i = 0; i < 100; ++i){

v.push_back(i);
std::cout << v.capacity() << std::endl;

}

std::deque is a dynamically sized double ended queue

I not contiguous in memory
I access either end: push_front or push_back
I generally better performance than std::list
I insert is faster than std::vector

Example:

std::deque<int> d;
for(int i = 0; i < 100; ++i){

d.push_back(i);
d.push_front(i);

}

std::list and std::forward_list

I doubly and singly linked-lists respectively
I constant time insertion anywhere
I no random access
I std::list supports bidirectional iteration
I space efficient, no extra space as in std::vector
I can be less efficient than std::vector because of cache misses

adaptors provide wrappers around other containers

I stack (deque)
I queue (deque)
I priority_queue (a heap using vector for storage)

std::map and std::multimap are dictionaries (key,value)
I std::map requires unique keys and value
I implemented as red-black tree (balanced binary tree)
I index operator[] is very handy

Example:

std::map<std::string, int> occurances;
occurances["hello"] += 1;
occurances["hello"] += 1;
occurances["goodbye"] += 1;

for(std::map<std::string, int>::iterator it = occurances.begin();
it != occurances.end();
++it)

{
std::cout << "You said " << it->first << " "

<< it->second << " times." << std::endl;
}

See also std::set and std::multiset (no value, just a key)

Hash tables
I unordered_set / unordered_map
I unordered_multiset / unordered_multimap
I constant (amortized) time find, insert, remove

Same Example

std::unordered_map<std::string, int> occurances;
occurances["hello"] += 1;
occurances["hello"] += 1;
occurances["goodbye"] += 1;

for(std::unordered_map<std::string, int>::iterator it = occurances.begin();
it != occurances.end();
++it)

{
std::cout << "You said " << it->first << " "

<< it->second << " times." << std::endl;
}

algorithms library

I Non-modifying sequence operations
I Modifying sequence operations
I Partitioning operations
I Binary search
I Set operations
I Heap operations
I min/max
I numeric (see random number generators too)

Example

Consider the following task: find the largest numerical value in a
fixed length list of integers.

int a[] = {5,9,7,4,41,3,16,11,5};
int len = sizeof(a)/sizeof(a[0]);

assert(max(a,len) == 41);

C-style implementation of max

int max(const int a[], const int len)
{

int m = a[0];
for(int i = 0; i < len; ++i)

{
if(a[i] > m) m = a[i];

}
return m;

}

C++03 implementation of max

int max(const int a[], const int len)
{

std::vector<int> v(a, a+len);

int m = v[0];
for(int i = 0; i < len; ++i)

{
if(v[i] > m) m = v[i];

}
return m;

}

C++03 implementation of max using iterators

int max(const int a[], const int len)
{

std::vector<int> v(a, a+len);

int m = v[0];
for(std::vector<int>::iterator it = v.begin();

it != v.end(); ++it)
{

if(*it > m) m = *it;
}

return m;
}

C11-style implementation of max

int max(const int a[], const int len)
{

std::vector<int> v(a, a+len);

std::vector<int>::iterator result;
result = std::max_element(v.begin(), v.end());
return *result;

}

This can be shortened further

int max(const int a[], const int len)
{

return *(std::max_element(a, a+len));
}

Example: using for_each rather than an explicit loop

I loops can be a source of bugs
I instead write a functor and use for_each

See example.

Next Actions and Reminders

I Program 5 due Monday

Please, don’t forget to take the SPOT survey!

