
ECE 2574
Introduction to Data Structures and Algorithms

38: Introduction to Graphs

Chris Wyatt
Electrical and Computer Engineering
Virginia Tech

Graphs

One can approach graphs from different perspectives

1) It is a data structure: extension of trees

2) Is is a mathematical construct

3) A model of many different real world problems

From trees to graphs

Tree

Graph

Definition of a graph

A graph is a collection of vertices (nodes), V, and a
set of pairs of vertices, E.
 G = {V,E}

Example: V = {a b c d} E = {(a,c) (c,b) (b,d)

a b c d

a b c d

a and c
are

adjacent

Terminology: Edges

Edges may be

undirected

or

directed

order of vertex pairs
neglected

order of vertex pairs
determines direction

Terminology: graphs vs multi-graphs

Graphs have at most one edge between two vertices
V = {a b c d} E = {(a,c) (c,b) (b,d)}

Multigraphs allow duplicate edges
V = {a b c d} E = { (a,c) (c,b) (b,d) (a,c) }

a b c d

a b c d

Terminology: subgraphs

Any subset of V and E forms a subgraph

a

b

c

f

i

a

b

i

Undirected Graph G A subgraph of G

Terminology: subgraphs

Any subset of V and E forms a subgraph

a

b

c

f

i

Undirected Graph G Another subgraph of G

b

c

f

Terminology: paths

A path is a sequence of vertices connected by edges

a

b
c d

e

f g

h

i

j

k

l

Paths may be directed or undirected

Terminology: paths

A path is a sequence of vertices connected by edges

a

b
c d

e

f g

h

i

j

k

l

Paths may be directed or undirected

Terminology: cycle

A cycle is a path that starts and stops at the same
vertex

a

b
c d

e

f g

h

i

j

k

l

Terminology: cycle

A cycle is a path that starts and stops at the same
vertex

a

b
c d

e

f g

h

i

j

k

l

Terminology: cycle

A cycle is a path that starts and stops at the same
vertex

a

b
c d

e

f g

h

i

j

k

l

Terminology: connected / disconnected

A graph is connected if every pair of vertices are
connected by at least one path

a

b

c

d

f

g

i k

l

Terminology: connected / disconnected

Otherwise it is disconnected.

a

b

c

d

f

g

i k

l

Vertices and Edges can have properties or
attributes attached to them.

Example: driving routes between cities

Blacksburg

Radford

Christiansburg

Roanoke

7.86 miles
15 min

14.3 miles
23 min 10 miles

 17 min
46.7 miles
53 min

37.5 miles
40 min

Vertices and Edges can have properties or
attributes attached to them.

Example: driving routes between cities

Blacksburg

Christiansburg

7.86 miles
15 min

Name
GPS coord
Population

etc
length in miles
driving time
road type (2 lane, 4 lane, access controlled)

A commonly encountered graph is one where
the edge property is a weight.

Weighted graphs (directed or undirected) have
edges whose property is a cost.

Often one want to find paths connecting nodes where

some function of the sum of the weights is optimal
a min or max).

For example: what is the shortest route from

Roanoke to Radford? what is the fastest? etc.

Some categories of graphs

Complete

Random

Planar

Small-World Graphs

Small world graphs often appear in the real world and
have very interesting properties.

•  Seven degrees of Kevin Bacon
•  Large Scale Computer Networks

•  Brains Neural Connections in
the worm C-elegans

279 vertices

6,417 edges

Example uses of graphs

Path planning
Layout routing
Games and puzzles
Many kinds of circuits
Networked systems
Optimization
Constraint Satisfaction
Logical Inference
Probabilistic Inference
..... on and on

Implementing Graphs

There is no graph data structure in the current
standard C++ library.

It is easy to roll your own using existing standard

library containers.

There is also the boost graph library (www.boost.org)

Three common approaches to representing
graphs.

Adjacency matrix: given N vertices, the edges are
indicated by an NxN matrix

Adjacency List: given N vertices, the edges are

indicated by a list of connected vertices for each
vertex.

Pointer based: given a pointer to a vertex, which

contains pointers to it’s adjacent vertices

Graph using an adjacency matrix

a b c d

a 0 1 0 1

b 1 0 0 0

c 0 1 0 1

d 0 0 0 0

a

b

c

d

- Undirected graphs have a symmetric matrix
-  Weighted graphs have integer or real entries

Graph using an adjacency list

a

b

c

d

a

b

c

d

b d

a

b d

- the lists could be vectors, linked, or trees

Graph using pointers

-  graph must have a root and be connected.
-  Why?

a

b

c

d

root

Advantages/Disadvantages of implementations

Adjacency matrix

Advantages

 1. simple
 2. space efficient for dense graphs (~ complete)
 3. fast access to all edges

Disadvantages
 1. space inefficient for sparse graphs

Advantages/Disadvantages of implementations

Adjacency list

Advantages

 1. space efficient for sparse graphs
Disadvantages

 1. space inefficient for dense graphs
 2. access to arbitrary edges slower

Advantages/Disadvantages of implementations

Pointer based

Advantages

 1. space efficient for sparse graphs
Disadvantages

 1. space inefficient for dense graphs
 2. access to arbitrary edges slower
 3. cannot represent disconnected graphs (easily)

Next Actions and Reminders

Read CH pp. 614-630 on graph traversals and
algorithms

Program 5 is due 12/11

Please Fill out the SPOT survey!

