ECE 2574
Introduction to Data Structures and Algorithms

37: Balancing Trees: Red-Black Trees

Chris Wyatt
Electrical and Computer Engineering
Virginia Tech

The average complexity (hnumber of comparisons)
when searching a BST is best when the tree is
balanced.

So the question naturally arises, can we make a BST
balanced?

Review: Balanced Trees

Recall, a tree of height h is balanced if it is full down
to level h-1;

and the depth of a tree was the number of nodes
from the root to a leat.

Basic approach to making a balanced binary
tree.

1. Insert/Delete a node
2. Restore the balance of the tree.

The primary tool used to restore balance is called a
rotation.

There are left and right rotations
and

the rotation should not violate the binary tree
property.

Review: Left rotation

Let A, B, and C be subtrees and a, b nodes in the
following tree.

rotate(a, b) left

G————
0 a,
e C A Q

Review: Right rotation

Let A, B, and C be subtrees and a, b nodes in the
following tree.

rotate(b, a) right
—————————-

Q C A G

The two most popular balanced Binary Trees
are the AVL and the Red-Black Tree.

AVL trees (named after Adel’ son-Velsk’ ii and Landis
who introduced them in 1962) require that the
depths of the left and right subtrees of any node
differ by at most one.

The rules to enforce the AVL property are complex.

The two most popular balanced Binary Trees
are the AVL and the Red-Black Tree.

A related tree, introduced by Bayer in 1972, called
red-black trees (symmetric binary B-trees) have the

oroperty: no path from the root to the leaf has

ength more than twice the length of any other

path.

Red-black trees are much easier to implement.

Definition of a red-black tree

A red-black tree is a binary search tree, augmented by leaf
nodes corresponding to an unsuccessful search.

O node in the search tree

o augmented node

1

nodes have a
parent as well
as child pointers

Each node has been assigned either the color red or black

subject to three properties.

Coloring properties of the red-black tree.

Each node is assigned the color red or black based on the
following properties:

1. Every leaf node is black
2. If a node is red, then both its children are black

3. Any two paths from a given node down to a leaf node
contain the same number of black nodes.

As a consequence of this coloring scheme, the maximum
depth of the red-black tree T with n nodes is at most

twice the minimum depth.
depth(T) <= 2 log,(n+1)

Example red-black tree (12 internal nodes)

35

108

21

Modifications necessary to BST to implement a red-
black tree.

Add special augmented nodes corresponding to
unsuccessful searches.

Add a color to the definition of TreeNode.
Add a parent pointer to TreeNode.

Modify the insert and delete operations to maintain the
parent pointers and augmented nodes.

Inserting into a red-black tree

First call modified BST insert and color the inserted node
red.

If the parent of the inserted node is black, we are done.

Else, property 2 is violated:
2. If a node is red, then both its children are black

At most two rotations and some re-coloring restores
property 2 with violating the other properties.

For any node v In a red-black tree, we define the
local neighborhood of v as follows:

The local neighborhood of v is v with its parent grandparent
and uncle.

Restoring property 2 involves re-coloring and (possibly)
rotating nodes in the local neighborhood.

For each restoration on insert there are 6 cases, 3 of
which are symmetric to the other three.

Case 1: the current node has a red uncle and its parent
node is a red left child.

re-color parent, grandparent,
and uncle, then move current
node to grandparent

For each restoration on insert there are 6 cases, 3 of
which are symmetric to the other three.

Case 2: the current node is a right child, whose parent is a
red left child, and whose uncle is black.

rotate(parent, current) left and
move current node to sibling

For each restoration on insert there are 6 cases, 3 of
which are symmetric to the other three.

Case 3: the current node is a left child, whose parent is a
red left child, and whose uncle is black.

change color of parent and
grandparent, then
rotate(parent, grandparent) right

So we see the insertion process is somewhat
complex (not as complex as for AVL trees though)

Deletion of a node in a red-black tree is slightly more
complex.

The local neighborhood includes the node, its parent, its
sibling, and its siblings children (nieces and nephews).

Implementation of a Red-Black Tree

See RBTree.h

So what does the red-black tree provide ?

Does the added complexity on inserts and deletes of a red-
black tree balance out the increase in average or worst-
case search complexity?

The complexity of insertion and deletion in a red-black tree
with n internal nodes is proportional to the depth of T.

depth(T) <= 2 log,(n+1)

Thus we say that the complexity is O(log n)

Next Actions and Reminders

Read CH pp. 603-614 on graphs

Program 5 is due 12/11.

