
ECE 2574
Introduction to Data Structures and Algorithms

36: Hash Tables

Chris Wyatt
Electrical and Computer Engineering
Virginia Tech

Dictionaries

A balanced tree can be used to very efficiently store
and retrieve information.

Example: in a 10,000 word dictionary based on a

Red-Black tree takes 13-14 comparisons on
average to insert/find/retrieve.

In-order traversals are still linear.

Dictionaries

What if we need to retrieve faster?

Example: File System

Consider a simple disk, modeled as an array. We can

move to a specific index to start reading the file
contents.

How could we find the index where the file
“myfile.txt” is found?

Simple File System

Filenames (no directories):
 myfile.txt
 anotherFile.ext

Disk

contents of myfile.txt

contents of anotherFile.ext

0 1 2 3 4 …..

Given file name we
want to locate
where is starts fast.

Block diagram of the retrieve task

Think about the box as an address calculator, it takes
a key and maps it to an address where the item is
stored.

address = h(key)

hash function

key

found

address or
item

Example Uses of hashes

General dictionaries
Cryptography and Passwords (example: SHA)
Error correction (example: CRC)
Identification and verification (example: MD5)
Media identification / retrieval (name that tune)
Finding objects (geometric hashing)

Retrieve using a hash function

retrieve(in key:keyType, out item:itemType): bool

 itemType loc = hash(key)
 if(loc.key != key)
 return false
 else
 item = loc.item
 return true
 endif

Insert is as easy

insert(in key:keyType, out item:itemType)

 itemType loc = hash(key)

 loc.item = item

Two fundamental questions

1.  How to determine the hash function
-  lots of options
-  a bit of a black art (requires experimentation)

2.  How to store the items in memory
- using an array with a hash function is called a
hash table

How to determine the hash function

Simple example: Given an array[0:m-1] and key, k,
a positive integer

h(k) = k mod m

2

9

0
1
2
3
4

insert(2): 2 mod 5 = 2
insert(9): 9 mod 5 = 4
insert(17): 17 mod 5 = 2

collision, there is
already something
in slot 2

Perfect hash function

A hash that has no collisions is called perfect.

There are actually tools to help design perfect hash

functions, if you know all the strings in advance.

Example: gperf

 http://www.gnu.org/software/gperf/

Collisions

What if you don’t know the possible items ahead of
time? - no perfect hash may exist.

There are two basic approaches to resolving

collisions:
 1. open addressing
 2. chaining

Open Addressing

In open addressing, we move on to another slot. If
that one is full, we move to another, ….

This is called probing. We probe for an empty slot.
(note this probe sequence must be repeatable)

Linear probing is the simplest:

 index = h(key)
 while array[index] is not full
 index = index + 1 mod array.size
 endwhile

How do you know if an index if full?

Some possibilities:

Reserve an item value that indicates empty.

Each array entry is a struct with item and empty fields

Array is an array of pointers, with NULL indicating

empty.

In class exercise

For a hash table of size 11 and a hash function
h(k) = k mod 11
use linear probing to insert keys 2,8,12,19,20,32,11

Quadratic Probing

To reduce clustering in the hash table, you can use
quadratic probing

 index = h(key)
 probe = 1
 while array[index] is not full
 index = h(key) + probe*probe mod array.size
 probe += 1
 endwhile

Another approach: rehashing

If there is a collision, hash again using a different
function to obtain the linear probe step size

Example: for a table of size 11
 h1(k) = k mod 11, this is the primary hash
 h2(k) = 7 - (k mod 7), this is the secondary hash

Note: h2(k) can’t be zero and h2(k) can’t equal h1(k)

In class exercise

For a hash table of size 11 and hash functions
h1(k) = k mod 11
h2(k) = 7 - (k mod 7)

use rehashing to insert keys 2,8,12,19,20,32,11

2nd approach to collisions: chaining

Make the hash table an array of linked lists.

0
1
2
3
4

insert(2): 2 mod 5 = 2
insert(9): 9 mod 5 = 4
insert(17): 17 mod 5 = 2

2 17

9

In class exercise

For a hash table of size 11 and hash function
h1(k) = k mod 11

use chaining to insert keys 2,8,12,19,20,32,11

(sketch the linked lists)

Choosing (and designing) hash functions

sizes.

A hash function should be

 - fast to compute
 - distribute data evenly through the table (to
prevent collisions)

reaches about 2/3 of m, hashing becomes
inefficient. inefficient.

Some well known hash functions

Robert Sedgwicks (RS) hash
unsigned int RSHash(const std::string& str)
Robert Sedgwicks (RS) hash
unsigned int RSHash(const std::string& str)
{
 unsigned int b = 378551;
 unsigned int a = 63689;
 unsigned int hash = 0;

 for(std::size_t i = 0; i < str.length(); i++)
 {
 hash = hash * a + str[i];
 a = a * b;
 }

Some well known hash functions

unsigned int JSHash(const std::string& str)
{
 unsigned int hash = 1315423911;

 for(std::size_t i = 0; i < str.length(); i++)
 {
 hash ^= ((hash << 5) + str[i] + (hash >> 2));
 }

 return hash;
}}

UNIX object file hash (ELF)
UNIX object file hash (ELF)
unsigned int ELFHash(const std::string& str)
{
 unsigned int hash = 0;
 unsigned int x = 0;

 for(std::size_t i = 0; i < str.length(); i++)
 {
 hash = (hash << 4) + str[i]; if((x = hash & 0xF0000000L) != 0)
 if((x = hash & 0xF0000000L) != 0) {
 {
 hash ^= (x >> 24);
 }
 hash &= ~x;
 }
 return hash;

Some well known hash functions

Donald E. Knuth in The Art Of Computer
Programming Volume 3

unsigned int DEKHash(const std::string& str)
{
 unsigned int hash = static_cast<unsigned

int>(str.length());

 for(std::size_t i = 0; i < str.length(); i++)
 {
 hash = ((hash << 5) ^ (hash >> 27)) ^ str[i];
 }

 return hash;
}

Advantages/Disadvantages of hashing

Advantages: (good hash function, not close to full)
 - insert is O(1)
 - retrieve is O(1)
 - delete is O(1)

Disadvantages:

 - traversals in order by key is (very) slow
 - selection in a range of keys is (very) slow

Next Actions and Reminders

Read CH pp. 567- 591 and pp. 592-598 on Red-
Black Trees.

Program 5 is due 12/11, if you have late days you

can use them.

