
ECE 2574
Introduction to Data Structures and Algorithms

35: Balancing Trees: Treaps

Chris Wyatt
Electrical and Computer Engineering
Virginia Tech

Today we will see a way to approximately
balance a binary search tree using Treaps, or a
tree of heaps.

Review BST implementation
Subtree rotations
Treap nodes
Treap insert
Treap remove
Treap search
Program 5

The complexity of the Binary Search Tree is
obviously important in applications.
Basic operations:

insert
delete
search

How fast can we search a binary search tree for a
key?

What is the best case ?
What is the worst case ?
What is the average case ?

These use search

What is the organization for searching a BST,

that has the smallest number of comparisons in the
best case?

that has the smallest number of comparisons in the
worst case?

that has the smallest number of comparisons in the
average case?

What is the worst order of insertion into a
binary search tree we could have?
What if we inserted 20, 40, 45, 50, 55, 60 ?

40

20

60

50

45

55

To summarize,

The average complexity (number of comparisons)
when searching a BST is best when the tree is
balanced.

So the question naturally arises, can we make a BST
balanced?

40
20

60

50
45

55

40

20 60

50

45

55

Balanced Trees

Recall, a tree of height h is balanced if it is full down
to level h-1;

and the depth of a tree was the number of nodes
from the root to a leaf.

Basic approach to making a balanced binary
tree.
1.  Insert/Delete a node
2.  Restore the balance of the tree.

The primary tool used to restore balance is called a
rotation.

There are left and right rotations
and

the rotation should not violate the binary tree
property.

Left rotation

Let A, B, and C be subtrees and a, b nodes in the
following tree.

Right rotation

Let A, B, and C be subtrees and a, b nodes in the
following tree.

Pseudo-code for doing a rotate right
// rotate a tree rooted at node
rotateRight(in node:TreeNode)

b = node
a = node->left_child
// if b is a left child
if b = b->parent->left_child

b->parent->left_child= a
else // b is a right child

b->parent->right_child= a
endif

make B subtree left subtree of b
make b into a’s right child

In class exercise: modify to perform a rotate
left.

The two most popular balanced Binary Trees
are the AVL and the Red-Black Tree.
AVL trees (named after Adel’son-Velsk’ii and Landis

who introduced them in 1962) require that the
depths of the left and right subtrees of any node
differ by at most one.

The rules to enforce the AVL property are complex.

The two most popular balanced Binary Trees
are the AVL and the Red-Black Tree.
A related tree, introduced by Bayer in 1972, called

red-black trees (symmetric binary B-trees) have the
property: no path from the root to the leaf has
length more than twice the length of any other
path.

Red-black trees are much easier to implement, but
still rather involved.

We will look at them in detail Friday.

A similar type of tree that is easier to program
is the Treap.

A treap is a binary search tree that remains balanced
in the sense that with high probability the height of
the tree is proportional to the log of the number of
nodes.

Each node is augmented with a randomly generated

priority.

Like a normal BST the keys in the left/right subtrees

are less/greater than the subtree root key, but they
also form a heap with respect to the priority.

To implement the treap we add a priority
member to the node structure.

When a node is created the priority is assigned a
random value.

See treap_bst.h and treap_bst.txx	

Treap Insert

1.  Insert using binary search tree algorithm
2.  Generate a random priority
3.  Perform rotations to bubble up the node based on

priority
•  If node is a left child, rotate right about parent
•  If node is a right child, rotate left about the

parent
•  Stop when parent priority > node priority or

node is root

Treap Insert Examples

Treap Remove

1.  Search for the node
2.  3 cases:

1.  Node is a leaf, just remove it
2.  Node has a single child, remove node and

replace with child
3.  Node has 2 children. Rotate about node with

the direction determined by the relative
ordering of the child priorities.

If lchild priority < rchild priority rotate left
If lchild priority > rchild priority rotate right
Continue as long as node has two children.

Treap remove

Hints:

Do the work in case #3 first, this reduces to case #2

Then test for case #1 and #2.

Treap Remove Examples

Treap Search

This is just normal Binary Search Tree search.

Next Actions and Reminders

Read CH pp. 544-563 on Hash Tables

Program 5 is due 12/11

