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Today we will see a way to approximately 
balance a binary search tree using Treaps, or a 
tree of heaps. 

Review BST implementation  
Subtree rotations 
Treap nodes 
Treap insert 
Treap remove 
Treap search 
Program 5 



The complexity of the Binary Search Tree is 
obviously important in applications.
Basic operations: 

insert 
delete
search

How fast can we search a binary search tree for a 
key? 

What is the best case ? 
What is the worst case ? 
What is the average case ? 

These use search 



What is the organization for searching a BST,

that has the smallest number of comparisons in the 
best case? 

that has the smallest number of comparisons in the 
worst case? 

that has the smallest number of comparisons in the 
average case?



What is the worst order of insertion into a 
binary search tree we could have?
What if we inserted 20, 40, 45, 50, 55, 60 ?
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To summarize,

The average complexity (number of comparisons) 
when searching a BST is best when the tree is 
balanced. 

So the question naturally arises, can we make a BST 
balanced?
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Balanced Trees

Recall, a tree of height h is balanced if it is full down 
to level h-1; 

and the depth of a tree was the number of nodes 
from the root to a leaf.



Basic approach to making a balanced binary 
tree.
1.  Insert/Delete a node 
2.  Restore the balance of the tree. 

The primary tool used to restore balance is called a 
rotation. 

There are left and right rotations 
and 

the rotation should not violate the binary tree 
property.



Left rotation

Let A, B, and C be subtrees and a, b nodes in the 
following tree.



Right rotation

Let A, B, and C be subtrees and a, b nodes in the 
following tree.



Pseudo-code for doing a rotate right
// rotate a tree rooted at node
rotateRight(in node:TreeNode) 

b = node
a = node->left_child 
// if b is a left child
if b = b->parent->left_child 

b->parent->left_child= a 
else // b is a right child

b->parent->right_child= a 
endif 

make B subtree left subtree of b
make b into a’s right child 



In class exercise: modify to perform a rotate 
left.



The two most popular balanced Binary Trees 
are the AVL and the Red-Black Tree.
AVL trees (named after Adel’son-Velsk’ii and Landis 

who introduced them in 1962) require that the 
depths of the left and right subtrees of any node 
differ by at most one.

The rules to enforce the AVL property are complex.



The two most popular balanced Binary Trees 
are the AVL and the Red-Black Tree.
A related tree, introduced by Bayer in 1972, called 

red-black trees (symmetric binary B-trees) have the 
property: no path from the root to the leaf has 
length more than twice the length of any other 
path. 

Red-black trees are much easier to implement, but 
still rather involved.

We will look at them in detail Friday.



A similar type of tree that is easier to program 
is the Treap. 

A treap is a binary search tree that remains balanced 
in the sense that with high probability the height of 
the tree is proportional to the log of the number of 
nodes. 

 
Each node is augmented with a randomly generated 

priority. 
 
Like a normal BST the keys in the left/right subtrees 

are less/greater than the subtree root key, but they 
also form a heap with respect to the priority.   



To implement the treap we add a priority 
member to the node structure. 

When a node is created the priority is assigned a 
random value. 

 
See treap_bst.h and treap_bst.txx	



Treap Insert 

1.  Insert using binary search tree algorithm 
2.  Generate a random priority 
3.  Perform rotations to bubble up the node based on 

priority  
•  If node is a left child, rotate right about parent 
•  If node is a right child, rotate left about the 

parent 
•  Stop when parent priority > node priority or 

node is root 



Treap Insert Examples 



Treap Remove 

1.  Search for the node 
2.  3 cases: 

1.  Node is a leaf, just remove it 
2.  Node has a single child, remove node and 

replace with child 
3.  Node has 2 children. Rotate about node with 

the direction determined by the relative 
ordering of the child priorities. 

If lchild priority < rchild priority rotate left 
If lchild priority > rchild priority rotate right 
Continue as long as node has two children. 



Treap remove 

Hints: 
 
Do the work in case #3 first, this reduces to case #2 
 
Then test for case #1 and #2. 



Treap Remove Examples 



Treap Search 

This is just normal Binary Search Tree search. 



Next Actions and Reminders 

Read CH pp. 544-563 on Hash Tables 
 
Program 5 is due 12/11 


