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Recall the definition of a queue 

A variation is the introduction of a 
priority:  

A priority queue or heap 
 
Linked list or array implementations 

of a priority queue have O(n) 
performance for insert. 

 
However a tree based 

implementation has O(log n) 
insertion.  
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Heap ADT 

 
 
Insert is often called  
push 
 
Remove is often called  
pop 
 
Just looking at the next record to be removed is 

sometimes called top 



Heap implementation of priority queue 

A (max) heap is a binary tree with the following 
properties. 

-  The tree is empty  
or 
 
-The root is the largest key 

 and 
 each subtree is also a heap 

 
Note the tree is always complete.  

8 

6 4 

3 2 



Inserting into a heap 

Insert into the last available slot. 
 
Bubble up the value: 

 exchange with parent as long 
as parent < value 

 
Example: insert 9 
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Removing from a heap 

Remove root 
 
move the last node to the root 
 
bubble down: 

 exchange with the largest child until 
children are all less than the value 

 
Example 

  

9 

6 8 

3 2 4 

6 8 

3 2 4 

4 

6 8 

3 2 

8 

6 4 

3 2 



Complexity 

What is the complexity of heap insert? 
 
 
 
 
What is the complexity of heap delete? 



Implementing heaps using an array 

Because a heap is a complete binary tree it can be 
efficiently represented as an array using 1-based 
indexing. 
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Pseudo-code for array-based heap insert 
insert(ItemType array[], ItemType item) 
   i = heapsize + 1  
   j = i >> 1 
  while( (j >= 1) and (array[j] < item) ) 
      array[i] = array[j] 
      i = j 
      j = j >> 1 
 endwhile 
array[i] = item 
heapsize = heapsize + 1 
 



Pseudo-code for array-based heap remove 
ItemType remove(ItemType array[]) 
   temp = array[1] 
   array[1] = array[heapsize] 
   heapsize = heapsize-1 
   i = 1 and j = 2 
   while( j <= heapsize)   
     if( j < heapsize and array[j] < array [j+1]) j = j+1 
     if( array[i] < array[j] ) swap(array[i], array[j]) 
     else break 
     i = j 
     j = j << 1  
 endwhile 
 return temp 

 



Building an array-based heap in place 

Treat the first n positions as a heap of size n. 
 
Position n+1 is the next to insert in the heap. 
 
Continue while n <= N  
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In class exercise 

Given an array with the following values, show each 
step as you convert it to a max heap. 

 
int a[] = {7,2,9,4,1,5}; 



Heap Priority Queue using DynamicArrayList 

See code. 



Array-based incomplete binary trees 

Define a special value as the missing value. 
 
Traditionally done as a union or array of pointers, but 

there is an experimental std::optional type. 
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Next Actions and Reminders 

Read CH 6th edition pp. 459-482 
Program 4 due 11/17 by 11:59 PM 
 


