
ECE 2574
Introduction to Data Structures and Algorithms

31: Binary Search Trees

Chris Wyatt
Electrical and Computer Engineering

Recall the binary search algorithm using a
sorted list.

We can represent the sorted list using a binary
tree with a specific relationship among the
nodes.

This leads to the Binary Search Tree ADT.

We can map the sorted list
operations onto the binary
search tree.

Because the insert and delete
can use the binary structure,
they are more efficient.

Better than binary search on a
pointer-based (linked) list.

Binary Search Tree (BST) Operations

Consider the items of type
TreeItemType to have an
associated key of keyType.

// create an empty BST
+createBST()
// destroy a BST
+destroyBST()
// check if a BST is empty
+isEmpty(): bool

Binary Search Tree (BST) Operations

// insert newItem into the BST based on its
// key value, fails if key exists or node
// cannot be created
+insert(in newItem:TreeItemType): bool

// delete item with searchKey from the BST
// fails if no such key exists
+delete(in searchKey:KeyItemType): bool

// get item corresponding to searchKey from
// the BST, fails if no such key exists
+retrieve(in searchKey:KeyItemType,
 out treeItem:TreeItemType): bool

Binary Search Tree (BST) Operations
// call function visit passing each node data
//as the argument, using a preorder
//traversal
+preorderTraverse(in visit:FunctionType)

// call function visit passing each node data
// as the argument, using an inorder
//traversal
+inorderTraverse(in visit:FunctionType)

// call function visit passing each node dat a
// as the argument, using a postorder
// traversal
+postorderTraverse(in visit:FunctionType)

An interface for Binary Search Trees

Template over the key type and the value type.

See abstract_bst.h

Binary Search Tree implementation.

// get item corresponding to searchKey from the BST
// fails if no such key exists
+retrieve(in searchKey:KeyItemType,
 out treeItem:TreeItemType): bool

Pseudo-code for search

// searches the BST tree for item corresponding to key
search(intree:BinarySearchTree, in key:KeyItemType)
if(tree.isEmpty())

no item found
if(key= key of the root)

item found
else if (key < key of the root)

search(leftsubtreeof tree, key)
else

search(rightsubtreeof tree, key)

In class exercise

What is the complexity of search?

How to insert into the BST so as to maintain the
ordering.
What if we try to search for key = 7

Search terminates at the right
subtree of node 4.

What does that mean ?

If we insert 7 at ?, it is where it “belongs”

Pseudo-code for insert

insert(in key:KeyItemType, in item:TreeItemType)
if(search for key fails)

if(key< last node searched)
insert at left subtree of last node searched

else
insert at right subtree of last node searched

endif
else

insert fails
endif

In class exercise

What is the complexity of insert?

How to delete from the BST so as to maintain
the ordering.
What if we try to delete key = 4?

What if we try to delete key = 1?

What if we try to delete key = 10?

What if we try to delete key = 8?

Case where the node to delete has 2 children.

Attempt to delete node 8.

What if we find a node easier to
delete and delete it instead.

If we choose the inorder
successor, we can copy its
contents (key and item) into
current node (8), then delete
it instead.

The inorder successor of a node rooted at R, is
the leftmost node of the right subtree of R.

Which is the inorder
successor of this subtree?

Pseudo-code for delete

delete(in key:KeyItemType)
if(search for key fails)

delete fails
else

if (found node is leaf)
delete it

if (found node has left/right child only)
delete node, replace with left/right child,

else
find inorder successor, copy to found node
delete inorder successor

endif
endif

In class exercise

What is the complexity of delete?

Next Actions and Reminders

Read CH pp. 455-458 and Chapter 17 on heaps.
Program 4 is due 11/17.

