
ECE 2574: Data Structures and Algorithms -
Operator Overloading

C. L. Wyatt

Today we will look at how to overload operators.

The primary use of this is to define comparisons for types in ordered
containers, to define the stream extraction operator for
reading/writing objects from streams, and to define functors.

I review the copy-assignment operator
I comparison/relational operators
I istream and ostream operators
I subscript operator
I function call operator and functors
I arithmetic operators

In C++ you can define what most operators mean for
custom types (class/struct/enum).

We have already used one, copy-assignment or operator=.
If we write (for some type T)

T a,b;
b = a;

what really gets called is

T a,b;
b.operator=(a);

Most operators can be overloaded

I Arithmetic operators: = + - * / ++ -- % negation
I Comparison operators/relational operators: == != > < >= <=
I Logical operators: ! && ||
I Bitwise operators: ~ & | ˆ << >>
I Compound assignment operators: += -= *= etc.
I Member and pointer operators: [], pointer dereference,

address operator, etc.
I Other: function call (), new, delete (and many others)

However, most operators should not be overloaded.

Recommendations
Only overload operators that make sense. Prefer calling free
functions or method since their name helps establish the semantic
meaning of code.
Example

Resistor r1, r2;
...
Resistor r3 = combine_series(r1, r2);
Resistor r4 = combine_parallel(r1,r2);

rather than

Resistor r1, r2;
...
Resistor r3 = r1 + r2;
Resistor r4 = r1 | r2;

Never redefine operators to invert thier normal meaning.

Most (but not all) operators can be defined inside (as
members) or outside (as free functions).

Example: the addition operator for types R, T, U where R = T +
U can be defined as

R T::operator+(U rhs);

or

R operator+(T lhs, U rhs);

Which is used when is a matter of style, but I recommend limiting
member-defined operators to those that must be (e.g. operator=,
operator[]) or require internal access to class members for
performance reasons.

Here are what I consider the most important uses of
operator overloading

I comparison/relational operators
I istream and ostream operators
I subscript operator
I function call operator and functors
I arithmetic operators (in very specific cases)

Comparison (relational) operators

== != > < >= <= - define one, define them all.
This is trickier than it seems!
I recommend defining < and == as members and the rest as free
functions.
Example: see task_priority.cpp

Stream (istream and ostream) operators

C++ streams reuse the bitwise shift operators for chaining writes
and reads.
Example: see task_stream.cpp and
object_serialization.cpp.

Subscript operator

The subscript operator is usefull for many data structures.
For example in our List interface we could define
getPosition(std::size_t position) using operator[].
See vec_indexop.cpp.

Function call operator

Overloading the funciton call operator allows us to define functors,
objects that behave like functions but have state.
This is similar to closures and lambdas in other programming
langauges, where functions are first-class types.
These are very usefull when combined with the standard library
(<algorithms> in particular).
See functor_ex.cpp.
Note C++11 now has lambdas, but this is beyond the course scope.

Using functors to define comparisons

Consider our task sorting example above.
How could we easily switch between sorting based on task priority
versus date/time?
See task_sorting.cpp.

Arithmetic operators

In cases where you are defining a type with a formal mathematical
meaning for an operator, it is ok to overload the arithmetic
operators.
Examples:

I Linear Algebra: vector-matrix and matrix-vector multiplication
I Functions (as in continuous or discrete math): f(x) + g(x), f(x)
- g(x), f(g(x)), etc

I Signals: audio, images, etc

See vec_arithop.cpp.

Next Actions and Reminders

I Read CH pp. 425-441
I Project 4 due 11/17

