
ECE 2574: Data Structures and Algorithms -
Sorted Linked Lists

C. L. Wyatt



Today we will see how to adapt LinkedList into a sorted list
implementation.

I Review (Single) Linked List methods
I The protected class scope and internal Nodes
I Reusing LinkedList via inheritance



Recall the Sorted List ADT

A number of objects, not necessarily distinct but of the same type,
sorted by thier value.

+isEmpty(): boolean
+getLength(): integer
+insertSorted(newEntry: ItemType): void
+removeSorted(entry: ItemType): boolean
+remove(position: integer): boolean
+clear(): void
+getEntry(position: integer): ItemType
+getPosition(entry: ItemType: integer



These methods differed from the List ADT

I +insertSorted(newEntry: ItemType): void: insert the
entry in order

I +removeSorted(entry: ItemType): boolean: remove first
occurance

I +getPosition(entry: ItemType: integer: get position of
first occurance or the negated position where it would be



Recall our interface definition

See code abstract_sorted_list.h



Reusing LinkedList

To implement insert we would like to have access to the internal
node structure and the relevent members in a subclass, but we do
not want them to be public.
The answer: make them protected.
See linked_list.h and linked_list.txx.



Now we can extend the LinkedList class to be a
SortedLinkedList

See sorted_linked_list.h and sorted_linked_list.txx



Next Actions and Reminders

I Read CH pp. 373-378 (Queue ADT)
I There is a warmup for Monday!
I Program 3 is due 10/31.


