
ECE 2574: Data Structures and Algorithms -
Code Reuse

C. L. Wyatt



Today we will learn about code reuse via dynamic
polymorphism and compare it to composition.

I Subtyping and Object Hierarchies
I Abstract Base Classes as Interfaces
I Dynamic Casting
I Composition models “has-a”
I Examples



Dynamic Polymorphism

Polymorphism means selecting what code to run based on the type.
Dynamic polymorphism means the selection happens at runtime.
The basic language mechanisms are:

I Inheritance or Derivation
I Virtual Functions, also called dynamic dispatch or runtime

dispatch
I Encapsulation via private/public



Inheritance allows us to build one class from another.

Represents an “is-a” relationship. A Circle is a Shape.
You specify the base class after declaring the derived class as

class BaseClass {};
class DerivedClass: public BaseClass {};

The public part means that the public members of BaseClass are
inherited and become public members of DerivedClass.
Note the above is equavalent to

struct BaseClass {};
struct DerivedClass: BaseClass {};

since struct members are public by default.



Review: private, protected, and public

I members that are private can only be accessed by members in
the same class

I members that are protected can only be accessed by members
in the same class and those derived from it

I members that are public can be accessed by any functions

Note, this simplified version ignores friend access



private, protected, and public inheritance

I private inheritance means that the public and protected
members of the base class can only be used by the derived class

I protected inheritance means that the public and protected
members of the base class can only be used by the derived
class and any classes derived from it

I public inheritance means that the public members of the base
class can be used by any function

Note, there is no way to inherit the private members of a class.



Summary: private inheritance

So

class BaseClass {};
class DerivedClass: private BaseClass {};

means that the the public and protected members of BaseClass
become private members of DerivedClass.
This is less common than the others, but can be useful for writing
adaptors.



Summary: protected inheritance

class BaseClass {};
class DerivedClass: protected BaseClass {};

means that the the public and protected members of BaseClass
become protected members of DerivedClass.
This is used for keeping functionality within the tree of objects.



Summary: public inheritance

class BaseClass {};
class DerivedClass: public BaseClass {};

means that the the public members of BaseClass become public
members of DerivedClass.
This is the most used, and presents the client code with a
polymorphic interface.



A graphical view

Inheritance allow you to specify a tree relationship among types

Figure 1: Example



Virtual Functions

Declaring a method virtual means that it can be overridden in the
Derived class, but need not be.
Note that you can redefine the method in DerivedClass even if it
is not marked virtual, but it will not be called when represented as
the BaseClass. This is a source of much pain. If you intend for a
method to be overridden, mark it as virtual.
Note the virtual keyword is not used in the implementation if
outside the class definition.
To force the derived class to implement the method you make it
pure as

struct BaseClass {
virtual void aMethod() = 0;

};

Take care when overriding that the name and arguments match.
The compiler can’t catch all the likely mistakes here.



C++ allows multiple inheritance

class Base1 {};
class Base2 {};

class Derived: ACCESS Base1, ACCESS Base2

where ACCESS can be private, protected, or public.
This feature is much maligned because it creates confusion around
what gets inherited.
It is useful though for defining an interface.



An interface is a base class with only pure virtual methods.

This allows you to express that a class implements that interface
explicitly, and the compiler verifies that it at least implements the
methods.
When used with multiple inheritance this allows you to express that
some parts of an object tree implement a certain interface.
Example: AbstractBag, AbstractStack, AbstractList



Heterogeneous Collections using a Base Type

Since a pointer or reference to a base object can actually refer to a
derived object, you can defined containers of mixed type (within the
object hierarchy)
See example code



Dynamic Casting

Given a pointer to a base class you can attempt to convert it back
to a derived type using dynamic_cast.
See code
This works for up-cast (but is unnecessary), down-cast, and
sideways-cast.



Some remarks about dynamic polymorphism

I There are many places for bugs to hide
I Don’t get carried away with defining object hierarchies.
I Excessive casting is a code smell



Uses of Dynamic Polymorphism

Dynamic Polymorphism is very useful when you want to treat
objects (instances of classes) as hierarchical data.

I Graphical user interfaces are ideally suited to polymorphism.
They are just trees of widgets. Code to layout and draw
widgets should be independent of the specific interface.

I Rendering of dynamic objects, for example in simulations or
games, should be independent of the specific objects involved.

I Employees are people that have categories and form
departments, units, divisions, etc.



Composition is a major way of modeling has-a relationships

A composite type has member variables that correspond to its
components.

class Foo
{

ComponentType component;
}



Classic Example: People and Employees

A Person has-a
I name
I age
I address

An Employee is-a Person and has-a
I id
I role
I salary

See code



Classic Example: People, Employees, and Customers

A Person has-a
I name (first/last?)
I age (possibly unknown?)
I address (format?)

An Employee is-a Person and has-a
I id (unique?)
I role (static or dynamic?)
I salary (currency?)

Is a customer always a person?



Prefer Composition to Inheritance

Inheritance is overused and leads to tight coupling.
Composition

I gives the most flexibility with least coupling
I shorter compile times, a member can be a pointer, thus only

declared
I less error prone, no private/protected/public

Use inheritance only when you need to implement is-a relationships
that require polymorphism.



Example: A stack has-a list.

See code in stack_as_list.



Next Actions and Reminders

I Read CH pp. 347-351 on the Sorted List ADT
I Program 3 is due 10/31 by 11:59 pm.


