
ECE 2574: Data Structures and Algorithms -
List: Array Implementations

C. L. Wyatt



Today we will look at how to use a dynamically allocated
array internally to implement the List ADT.

I Warmup
I Review of the ADT
I Memory management revisited: rule of 3 and copy-swap idiom
I implementing the interface



Warmup

When should the copy constructor be written for a class?
I Always 3%
I For any class that uses dynamic allocation 62%
I For any class with a non-trivial destructor 36% (most correct)
I Never 0%



The Ordered List ADT and its abstract interface in C++

I Test if a list is empty

+isEmpty(): boolean
becomes
bool isEmpty() const



The Ordered List ADT and its abstract interface in C++

I Get the number of entries in the list

+getLength(): integer
becomes
std::size_t getLength() const



The Ordered List ADT and its abstract interface in C++

I Insert an entry at a given position in the list

+insert(newPosition: integer, newEntry: ItemType) :
boolean
becomes
bool insert(std::size_t position, const T& item)



The Ordered List ADT and its abstract interface in C++

I Remove entry at given position from the list

+remove(position: integer): boolean
becomes
bool remove(std::size_t position)



The Ordered List ADT and its abstract interface in C++

I remove all entries (clear)

+clear(): void
becomes
void clear()



The Ordered List ADT and its abstract interface in C++

I get a copy of the item at a given position

+getEntry(position: integer): ItemType
becomes
T getEntry(std::size_t position) const
with the possibility of throwing std::range_error.
What would be the implications of returning T& instead?



The Ordered List ADT and its abstract interface in C++

I replace the value of the item at a given position

+setEntry(position: integer, newValue: ItemType):
void
becomes
void setEntry(std::size_t position, const T&
newValue)
with the possibility of throwing std::range_error



Memory management: rule of 3 and copy-swap idiom

Since the dynamic array implementation requires managing memory
we need to implement

I Destructor
I Copy Constructor
I Copy Assignment



A dynamically allocated array implementation of
AbstractList

see inclass code.



Next Actions and Reminders

I Read CH pp. 272-286
I No warmup for Monday
I Note: Today is the last day to Drop.


